• Title/Summary/Keyword: Antarctic Peninsula

Search Result 55, Processing Time 0.023 seconds

A Note on Magnetic Properties of Volcanic Rocks Collected from King George Island, Antarctic Peninsula

  • Funaki, Minoru;Ogishima, Tomoko
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.313-318
    • /
    • 2002
  • The basic magnetic properties are reported for Eocene andesite and granitic andesite collected from the King Sejong Station and Marsh Runway at King George Island, South Shetland Islands Antarctic Peninsula. Samples A (andesite), B (granitic andesite) and D (granitic andesite) carry stable component of natural remanent magnetization (NRM), but sample C (andesite) unstable URM. These NRM stabilities are consistent with the domain structures estimated by the ratios of $J_R/J_s\;and\;H_{RC}/H_C$ values. On the basis of their Curie temperature, we infer magnetite as the main magnetic carrier for samples A B and C and titanomagnetite for sample D. Our study reveals that samples A and B are suitable for paleomagnetic investigations, whereas sample D is not.

The Species of Penguins and Penguins Occurring in the Vicinity of King Sejong Station (남극 세종기지 부근에 출현하는 펭귄)

  • Chang, Soon-Keun
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.137-147
    • /
    • 1999
  • Penguins are one of the key constituent organisms in the Antarctic ecosystem. A total of 18 species of penguins occur only in the southern hemisphere from the Galapagos Archipelago to southern area off Australia and New Zealand, South Africa, South America, and the islands scattered in the Southern Ocean to the coast along the Antarctic Continent. In the Antarctic Treaty area, there are only 5 species of penguins such as Emperor (Aptenodytes forsteri), Gentoo (Pygoscelis papua ellsworthi), Adelie (P. adeliae), Chinstrap (p. antarctica), and Macaroni (Eudyptes chrysolophus) penguins. Two additional species, the King (Aptenodytes patagonicus patagonicus) and Rockhopper (Eudyptes chrysocome) penguins, however, are distributed within the Antarctic Convergence. In the vicinity of king Sejong Station located in King George Island, the South Shetland Islands off the Antarctic Peninsula, 5 species are observed, among which 2 Pygoscelis species such as the Gentoo and Chinstrap penguins hatch their eggs and raise their chicks at the rookery 2km south offing Sejong Station in summer. Adelie penguins hatch their chicks in other place in King George Island. One Emperor penguin roamed on the frozen Maxwell Bay which has been frozen every two or three years with the approximate thickness of 60cm. And one Macaroni penguin also visited the rookery in summer. We should carry out researches on the penguins occurring in the vicinity of King Sejong Station to monitor the environmental changes around King Sejong Station and the South Shetland Islands.

  • PDF

Short-Term Effect of Elevated Temperature on the Abundance and Diversity of Bacterial and Archaeal amoA Genes in Antarctic Soils

  • Han, Jiwon;Jung, Jaejoon;Park, Minsuk;Hyun, Seunghun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1187-1196
    • /
    • 2013
  • Global warming will have far-reaching effects on our ecosystem. However, its effects on Antarctic soils have been poorly explored. To assess the effects of warming on microbial abundance and community composition, we sampled Antarctic soils from the King George Island in the Antarctic Peninsula and incubated these soils at elevated temperatures of $5^{\circ}C$ and $8^{\circ}C$ for 14 days. The reduction in total organic carbon and increase in soil respiration were attributed to the increased proliferation of Bacteria, Fungi, and Archaea. Interestingly, bacterial ammonia monooxygenase (amoA) genes were predominant over archaeal amoA, unlike in many other environments reported previously. Phylogenetic analyses of bacterial and archaeal amoA communities via clone libraries revealed that the diversity of amoA genes in Antarctic ammonia-oxidizing prokaryotic communities were temperature-insensitive. Interestingly, our data also showed that the amoA of Antarctic ammonia-oxidizing bacteria (AOB) communities differed from previously described amoA sequences of cultured isolates and clone library sequences, suggesting the presence of novel Antarctic-specific AOB communities. Denitrification-related genes were significantly reduced under warming conditions, whereas the abundance of amoA and nifH increased. Barcoded pyrosequencing of the bacterial 16S rRNA gene revealed that Proteobacteria, Acidobacteria, and Actinobacteria were the major phyla in Antarctic soils and the effect of short-term warming on the bacterial community was not apparent.

Distribution of Nutrients and Phytoplankton Biomass in the Area Around the South Shetland Islands, Antarctica (남극 남쉐틀랜드군도 주변 해역의 영양염과 식물플랑크톤 생물량 분포)

  • Kim, Dong-Seon;Kang, Sung-Ho;Kim, Dong-Yup;Lee, Youn-Ho;Kang, Young-Chul
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.77-95
    • /
    • 2001
  • Temperature, salinity, nutrients, chlorophyll-a, and primary production were measured within the upper 200 m water column in the area around the South Shetland Islands in January, 2000. Surface temperature was relatively high in the Drake Passage north of the South Shetland Islands and low in the northeastern area of the Antarctic Peninsula. In contrast, surface salinity was low in the Drake Passage and increased toward the Antarctic Peninsula, reaching the maximum value in the northeastern area of the Antarctic Peninsula. Surface nutrients were low in the Drake Passage and high in the area near the South Shetland Islands. Surface chlorophyll-a was also low in the Drake Passage and near the Antarctic Peninsula and high in the area of the northern King George Island. The study area could be classified as four geographical zones based on the characteristic shape of the T/S diagrams;the Drake Passage, the Bransfield Strait, the mixed zone, and the Weddell Sea. Each geographical zone showed apparently different physical, chemical, and biological characteristics. Phytoplankton biomass was relatively low in the Drake Passage and the Weddell Sea and high in the Bransfield Strait and the mixed zone. The low phytoplankton biomass in the Weddell Sea could be explained by the low water temperature and deep surface mixing down to 200 m. The high grazing pressure and low availability of iron could be responsible for the low phytoplankton biomass in the Drake Passage.

  • PDF

Seismic Structures of the Continental Margin around Smith Island, antarctic Peninsula (남극반도 스미스섬 부근 대륙주변부의 탄성파 구조)

  • Jin, Yong-Keun;Nam, Sang-Heon;Lee, Joo-Han;Hong, Jong-Kuk;Lee, Duk-Kee;Lee, Jong-Ik
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.443-453
    • /
    • 2006
  • Using seismic profiles obtained in the Antarctic Peninsula continental margin around Smith Island located at the southwestern end of the South Shetland Islands, we investigated sediments distribution, sedimentation, continental shelf formation, and tectonic evolution history. The study area is a very unique area that has two tectonic provinces with a tectonic boundary near Smith Island just the landward projection of the Hero Fracture Zone (HFZ). To the southwest of the Island, the margin became inactive margin after the collision of the ridge crest of the Antarctic-Phoenix ridge and trench, whereas to the northeast the margin is still apparently active margin with the spreading center and trench morphology in the sea. Generally the northeastern margin has the shelf sedimentary basins wth thick sedimentary layers, well-developed forearc basin, broad continental slope and distinct trench morphology, and the southwestern margin is characterized by steep and narrow continental slope and localized shelf basins. the mid-shelf basement high structures are distinct in the southwestern margin, which are thought to be formed by thermal effect caused by the subducted spreading centers. The high is observed in the area just northeast of the Island, implying that the tectonic boundary along the landward projection of the HFZ is not sharply defined.

  • PDF

Seismic Structures of the Eastern Bransfield Basin, Antarctic Peninsula (남극반도 동부 브랜스필드분지의 탄성파구조)

  • Jin, YoungKeun;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.2
    • /
    • pp.99-112
    • /
    • 2004
  • The Basin, a marginal basin located between the Antarctic Peninsula and the South Shetland Islands, is consist of three small basins, the Central, Eastern, Western Basins. Seismic data obtained on December 1995 show well-defined spreading ridges, basement highs, faults, morphology of the basin, distribution of sediments, crustal and sedimentary deformation, diapirs, and contourites. The main spreading axis of the Central Bransfield Basin connecting Deception and Bridgeman Islands continues up to the central part of the Eastern Basin, whereas deep basin covered by thick sediments without any spreading structures develops in the northeastern part. This indicates that back-arc spreading along the axis of the Bransfield Basin has been taken place in the southwestern part of the Eastern Basin, not in the northeastern part. Many NW-SE trending faults perpendicular to the axis of the basin would be related with strike-slip movement of the Shackleton Fracture. Zone. Extensinal strutures like deep basin without any spreading structures in the northeastern part, normal faults and diapirs on both continental slopes of the Eastern Basin would be formed by extension as a consequence of the sinistral movement between Antarctic and the Scotia plates.

  • PDF

Complete genome sequence of a cold-adapted humic acid degrading bacterium Pedobacter sp. PAMC 27299 from the Antarctic seashore (남극 해안으로부터 저온적응 부식산 분해 Pedobacter sp. PAMC 27299의 유전체 서열 해독)

  • Kim, Hye-Jin;Park, Jae Wan;Park, Ha Ju;Kim, Dockyu;Sul, Woo Jun
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.388-390
    • /
    • 2016
  • Pedobacter sp. PAMC 27299 with humic acid cultivated on low temperature was isolated from the moss debris on the coast of the Barton Peninsula of King George Island of the maritime Antarctic region. Here, we present the complete genome sequence of Pedobacter sp. PAMC 27299, which contains 6,147,290 bp with a G+C content of 40.54%. PAMC 27299 may possess cold-adapted humic acid degradation enzymes with implication on global warming.

Influence of microenvironment on the spatial distribution of Himantormia lugubris (Parmeliaceae) in ASPA No. 171, maritime Antarctic

  • Choi, Seung Ho;Kim, Seok Cheol;Hong, Soon Gyu;Lee, Kyu Song
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.493-503
    • /
    • 2015
  • This study analyzed how spatial distribution of Himantormia lugubris is affected by the microenvironment in the Antarctic Specially Protected Area (ASPA) No. 171 located in the Barton Peninsula of King George Island that belongs to the maritime Antarctic. In order to determine the population structure of H. lugubris growing in Baekje Hill within ASPA No. 171, we counted the individuals of different size groups after dividing the population into 5 growth stages according to mean diameter as follows: ≤ 1 cm, 1-3 cm, 3-5 cm, 5-10 cm, and ≥ 10 cm. The count of H. lugubris individuals in each growth stage was converted into its percentage with respect to the entire population, which yielded the finding that stages 1 through 5 accounted for 32.8%, 25.3%, 15.9%, 22.5%, and 3.5%, respectively. This suggests that the population of H. lugubris in ASPA No. 171 has a stable reverse J-shaped population structure, with the younger individuals outnumbering mature ones. The mean density of H. lugubris was 17.6/0.25 m2, mean canopy cover 13.3%, and the mean dry weight 37.8 g/0.25 m2. It began to produce spore in the sizes over 3 cm, and most individuals measuring 5-10 cm were adults with sexually mature apothecia. The spatial distribution of H. lugubris was highly heterogeneous. The major factors influencing its distribution and performance were found to be the period covered by snow, wind direction, moisture, size of the substrate, and canopy cover of Usnea spp. Based on these factors, we constructed a prediction model for estimating the spatial distribution of H. lugubris. Conclusively, the major factors for the spatial distribution of H. lugubris were snow, wind, substrate and the competition with Usnea spp. These results are important for understanding of the distribution in the maritime Antarctic and evolution of H. lugubris that claims a unique life history and ecological niche.

Tectonic features along the South Scotia Ridge, Antarctica (남극해 남스코시아 해령 주변의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Lee, Joo-Han;Nam, Sang-Heon;Park, Min-Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.139-144
    • /
    • 2005
  • Multichannel seismic survey has conducied along the South Scotia Ridge which is located in the northern part of Weddell sea, Antarctic sea, The South Scotia Ridge is part of continental crust extended from Antarctic Peninsula. It borders on Oceanic plates, the Scotia sea plate and Powell basin. Transtensional tectonics along the sinistral transform fault plate boundary led to the creation of the present tectonic geomorphology of the South Scotia Ridge. The fan-shaped deposits with angular unconformities in the central depression is interpreted as a divergent tectonic movement along the ridge.

  • PDF