• Title/Summary/Keyword: Antagonistic Activity

Search Result 434, Processing Time 0.026 seconds

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF

Antifungal Activity of Benzoic Acid from Bacillus subtilis GDYA-1 against Fungal Phytopathogens (Bacillus subtilis GDYA-1로부터 분리한 benzoic acid의 식물병원성 곰팡이에 대한 항균활성)

  • Yoon, Mi-Young;Seo, Kook-Hwa;Lee, Sang-Heon;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A bacterial strain antagonistic to some fungal phytopathogens was isolated from the stem of a Persimmon tree in Yeongam, Korea. This bacterium was identified as Bacillus subtilis by 16S rRNA gene sequencing and designated as B. subtilis GDYA-1. In in vivo experiment, the fermentation broth exhibited antifungal activities against Magnaporthe oryzae on rice plants, Phytophthora infestans on tomato plants, and Puccinia recondita on wheat plants. We isolated one antifungal compound and its chemical structure was determined by mass and $^1H$-NMR spectral data. The antifungal substance was identified as benzoic acid. It inhibited mycelial growth of M. oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and P. capsici with minimum inhibition concentration (MIC) values, ranging from 62.5 to 125 ${\mu}g/ml$. Moreover, the substance effectively suppressed Phytophthora blight of red pepper caused by P. capsici in a pot experiment. To the author's knowledge, this is the first report on the antifungal activity of benzoic acid against phytopathogenic fungi. Benzoic acid and B. subtilis GDYA-1 may contribute to environmental-friendly protect crops from phytopathogenic fungi.

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.

Inhibition of Urea Hydrolysis and Nitrification in Upland Soils by Artemisia asiatica Extracts (쑥 추출물(抽出物)의 밭토양중(土壤中) 요소분해(尿素分解), 질산화(窒酸化) 작용(作用) 억제효과(抑制效果))

  • Lim, Sun-Uk;Shin, Myonug-Ho;Park, Hyun-Jun;Kim, Min-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.392-399
    • /
    • 1998
  • Nitrogen fertilizers such as urea are readily hydrolyzed in soils to produce ammonium ions which pass through nitrification and denitrification processes. These serial processes have drawn attention due to nitrogen losses, eutrophication, blue baby syndrome, and ozone depletion problems. The purpose of this study was to test the inhibitory effects of hot-water extract and organic solvent fractions of Artemisia asiatica leaves on soil urea hydrolysis and nitrification. In addition, the effects of organic solvent fractions on urease activity and ureolytic bacterial population were also investigated. First, hot-water extract of Artemisia asiatica leaves inhibited soil nitrification substantially with a marginal stimulatory effect on soil urea hydrolysis. Soils treated with hot-water extract of Artemisia asiatica leaves showed significant decreases in the accumulation of soil $NO_3-N$ (~68% decrease) compared with the control soil without the treatment of hot-water extract. In contrast, $CHCl_3$/MeOH fraction and basic aqueous layer of Artemisia asiatica leaves inhibited soil urea hydrolysis very strongly, causing 5.8 and 4.3-fold higher accumulation in amounts of remaining urea-N compared with the non-treated soil. Meanwhile, non of the organic solvent fractions showed any significant effects on soil nitrification inhibition. The inhibition of ureolytic bacterial activity by $CHCl_3$/MeOH fraction and aqueous basic layer of Artemisia asiatica leaves without any effects on urease activity itself led us to conclude that the inhibitions of soil urea hydrolysis were caused by the antagonistic effects on ureolytic bacterial activity.

  • PDF

Antifungal Activity of Bacillus sp. AM-651 Against Phytophthora capsici (고추역병 유발병원균 Phytophthora capsici에 대한 Bacillus sp. AM-651의 항진균활성)

  • Lee, Jung-Bok;Shin, Jeong-Hak;Jang, Jong-Ok;Shin, Kee-Sun;Choi, Chung-Sik;Kim, Kun-Woo;Jo, Min-Sub;Jeon, Chun-Pyo;Kim, Yun-Hoi;Kwon, Gi-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.227-232
    • /
    • 2008
  • Biological antagonists of Phytophthora capsici were isolated from soil in Gyeongbuk, Korea. Among the isolated bacteria, a Bacillus sp. was identified from l6S rDNA sequence analysis and named Bacillus sp. AM-651. Bacillus sp. AM-65l strain which can strongly a antifungal activity against Phytophthora capsici. Culture conditions for the maximum production of the antagonistic substance were optimized. The production of antibiotic were high on modified Davis mineral medium pH 7 at $30^{\circ}C$. The medium for highest production of the agonistic substance optimized. It is composed the best activity on glucose, $(NH_4)_2SO_4$ and $K_2HPO_4$ at 0.5%, 0.1%, and 0.7%, respectively. By time course of culture solution selected Bacillus sp. AM-65l, the culture solution after 48hrs had strongly growth inhibition rate against P. capsici. And culture solution of Bacillus sp. AM-651 was stable within a pH range $5{\sim}11$ and temperature range $4{\sim}70^{\circ}C$. Bacillus sp. AM-651 cultured broth shown fungal growth inhibitory activity against B. sorokiniana, B. cinerea, R. solani avove and beyond P. capsici and comparatively showed a high activity against C. gloeosporioides, B. dothidea, B. cinerea and F. graminearum by agar diffusion method.

Cloning of the Cellulase Gene and Characterization of the Enzyme from a Plant Growth Promoting Rhizobacterium, Bacillus licheniformis K11 (고추역병 방제능이 있는 식물성장촉진 균주 Bacillus licheniformis K11의 cellulase 유전자의 cloning 및 효소 특성 조사)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • The cellulase gene of Bacillus licheniformis K11 which has plant growth-promoting activity by auxin and antagonistic ability by siderophore was cloned in pUC18 using PCR employing heterologous primers. The 1.6kb PCR fragment contained the full sequence of the cellulase gene, denoted celW which has been reported to encode a 499 amino acid protein. Similarity search in protein data base revealed that the cellulase from B. licheniformis K11 was more than 97% identical in amino acid sequence to those of various Bacillus spp. The cellulase protein from B. licheniformis K11, overproduced in E. coli DH5${\alpha}$ by the lac promoter on the vector, had apparent molecular weight of 55 kDa upon CMC-SDS-PAGE analysis. The protein not only had enzymatic activity toward carboxymethyl-cellulose (CMC), but also was able to degrade insoluble cellulose, such as Avicel and filter paper (Whatman$^{\circledR}$ No. 1). In addition, the cellulase could degrade a fungal cell wall of Phytophthora capsici. Consequently B. licheniformis K11 was able to suppress the peperblight causing P. capsici by its cellulase. Biochemical analysis showed that the enzyme had a maximum activity at 60$^{\circ}C$ and pH 6.0. Also, the enzyme activity was activated by Co$^{2+}$ of Mn$^{2+}$ but inhibited by Fe$^{3+}$ or Hg$^{2+}$. Moreover, enzyme activity was not inhibited by SDS or sodium azide.

Interaction between Lentinus edodes and Trichoderma spp. (표고버섯(Lentinus edodes)균과 Trichoderma spp.의 상호작용)

  • Kim, Young-Ju;Chai, Jyung-Ki
    • Journal of Mushroom
    • /
    • v.2 no.4
    • /
    • pp.184-191
    • /
    • 2004
  • Mutual growth limitation was observation when the two antagonistic fungi was come in contact with each other. Brown line was formed 2day after contact with Trichoderma spp., and then, green spores formed overnight. The laccase activity of L. edodes was stimulated when this fungus wsa co-incubated with Trichoderma spp. for a few days in liquid media. In sawdust-rice bran nixtures, outstanding broun line developed when the two antagonistic fungi co-cultured. The pH of the substrates changed from 5.5 to 4.5 after overgrowth, suggesting a difference in the degradation ability and the preference of the two fungi for the lignocellulose material.

  • PDF

Biological Control of Blue Mold of Apples by Bacillus spp. and Serratia marcescens (Bacillus spp. 및 Serratia marcescens에 의한 사과 푸른곰팡이병의 생물적 방제)

  • Kim, Yong-Ki;Lee, Seong-Don;Ryu, Jae-Gee;Ryu, Jae-Dang
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.229-236
    • /
    • 2003
  • The 1080 epiphytic bacteria obtained from 370 samples of pome and stone fruits including apple, pear, peach, grape, apricot and Chinese quince were screened for antagonistic activity against postharvest pathogens, Penicillium expansum, Alternaria alternata and Botrytis cinerea. Among tested antagonistic bacteria, eight bacterial isolates inhibited mycelial growth of the postharvest pathogens and were identified as Bacillus amyloliquefaciens (three strains), B. megaterium, B. subtilis var. gladioli, B. licheniformis, B. pumilus and Serratia marcescens based on biochemical characteristics and utility of carbon and nitrogen compounds (Biolog system). Eight carbohydrates were evaluated for their effect on mycelial growth and germination of the postharvest pathogen, P. expansum to select nutrients for enhancing bio-control efficacy. The growth of four selected antagonists, B. amyloliquefaciens P43-2, B. amyloliquefaciens A71-2, B. licheniformis P94-1, and S. marcescens P76-9 were also tested. As a result, 1% glucose (w/v) strongly stimulated growth of the antagonists, suppressed mycelial growth of the postharvest pathogen, and had a little comparatively stimulatory effect on germination of the the postharvest pathogen. It was confirmed that the addition of 1% glucose (w/v) greatly enhanced biocontrol effect of B. amyloliquefaciens P43-2, B. licheniformis P94-1, and S. marcescens P76-9. Application of B. amyloliquefaciens P43-2, B. licheniformis P94-1, and S. marcescens P76-9 with the addition of 1% glucose (w/v) increased the control efficacy up to 48%, 46%, 14% compared with those of the antagonists without glucose, respectively. When the antagonists were applied to control postharvest disease caused by P. expansum in apple wounds, the population of B. amyloliquefaciens P43-2 and B. licheniformis P94-1 increased until 4 days after inoculation (DAI) of the antagonists and then decreased from 10 DAI. Meanwhile the population of S. marcescens P76-9 decreased at early stage (4 DAI), but increased from 7 DAI, and finally maintained constantly until 10 DAI in apple wounds.

In vivo Antifungal Activity of Pyrrolnitrin Isolated from Burkholderia capacia EB215 with Antagonistic Activity Towards Colletotrichum Species (탄저병균에 대하여 길항작용을 보이는 Burkholderia cepacia EB215로부터 분리한 Pyrrolnitrin의 항균활성)

  • Park, Ji-Hyun;Choi, Gyung-Ja;Lee, Seon-Woo;Jang, Kyoung-Soo;Choi, Yong-Ho;Chung, Young-Ryun;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Mycology
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • An endophytic bacterial strain EB215 that was isolated from cucumber (Cucumis sativus) roots displayed a potent in vivo antifungal activity against Colletotrichum species. The strain was identified as Burkholderia cepacia based on its physiological and biochemical characteristics, and 16S rDNA gene sequence. Optimal medium and incubation period for the production of antifungal substances by B. cepacia EB215 were nutrient broth (NB) and 3 days, respectively. An antifungal substance was isolated from the NB cultures of B. cepacia EB215 strain by centrifugation, n-hexane partitioning, silica gel column chromatography, preparative TLC, and in vitro bioassay. Its chemical structure was determined to be pyrrolnitrin by mass and NMR spectral analyses. Pyrrolnitrin showed potent disease control efficacy of more than 90% against pepper anthracnose (Colletotrichum coccodes), cucumber anthracnose (Colletotrichum orbiculare), rice blast (Magnaporthe grisea) and rice sheath blight (Corticium sasaki) even at a low concentration of $11.1\;{\mu}g/ml$. In addition, it effectively controlled the development of tomato gray mold (Botrytis cinerea) and wheat leaf rust (Puccinia recondita) at concentrations over $33.3\;{\mu}g/ml$. However, it had no antifungal activity against Phytophthora infestans on tomato plants. Further studies on the development of microbial fungicide using B. cepacia EB215 are in progress.

Isolation and Characterization of Bacillus Species Having Antifungal Activity Against Pathogens of Ginseng Damping Off (인삼모잘록병원균에 항균활성을 갖는 Bacillus 균의 분리 및 특성조사)

  • Park, Kyeong Hun;Park, Hong Woo;Lee, Seong Woo;Lee, Seung Ho;Myung, Kyung Sun;Lee, Sang Yeob;Song, Jaekyeong;Kim, Young Tak;Park, Kyoung Soo;Kim, Young Ock
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.380-387
    • /
    • 2016
  • This study was performed to select potentially available biological control agent from soil bacteria for prevention of ginseng damping off. More than five hundred strains were isolated from ginseng rhizosphere soil. By testing antifungal activity, we have selected three soil bacteria strains and their ability to produce antibiotics and lytic enzymes such as cellulase, protease and pectate lyase was examined. Also, the presence of genes for biosynthesis of lipopeptide such as fengycin, bacillomycin D, surfactin, iturin A, and zwittermicin A was investigated in selected strains. All three strains produced cellulase, protease, and xylanase. Moreover, these strains had gene for biosynthesis of bacillomycin D, surfactin, and iturin A. ES1 and ES3 strains were identified Bacillus methylotrophucus and ES2 was confirmed Bacillus amyloliquefaciens using phylogenetic analysis on the basis of 16S rRNA gene sequences. In field test, control value of ES1, ES2 and ES3 treatment was 32.4%, 46.8% and 36.7%, respectively. This results indicate that antagonistic microbes with high ability of antifungal and lytic enzyme activity can be used as a useful biological control agent to control ginseng damping off.