• Title/Summary/Keyword: Ant Colony Algorithm

Search Result 127, Processing Time 0.024 seconds

Optimal solution search method by using modified local updating rule in ACS-subpath algorithm (부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법)

  • Hong, SeokMi;Lee, Seung-Gwan
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.443-448
    • /
    • 2013
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the total frequency of visits of the currently selected node in the previous iteration. I used the ACS algoritm using subpath for search. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

Ant Colony System for solving the traveling Salesman Problem Considering the Overlapping Edge of Global Best Path (순회 외판원 문제를 풀기 위한 전역 최적 경로의 중복 간선을 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Kang, Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Ant Colony System is a new meta heuristics algorithms to solve hard combinatorial optimization problems. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the searching method to consider the overlapping edge of the global best path of the previous and the current. This method is that we first determine the overlapping edge of the global best path of the previous and the current will be configured likely the optimal path. And, to enhance the pheromone for the overlapping edges increases the probability that the optimal path is configured. Finally, the performance of Best and Average-Best of proposed algorithm outperforms ACS-3-opt, ACS-Subpath and ACS-Iter algorithms.

Solution of SMP Problem by Adapting ACS Algorithm (ACS알고리즘을 이용한 안정된 결혼 문제 해결에 관한 연구)

  • Kim, Hyun;Chung, Tae-Choong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.68-74
    • /
    • 2010
  • This paper suggest a new ACS algorithm to solve SMP which was solved by Gale-Shapley algorithm. The stable marriage problem is an extensively-studied combinatorial problem with many practical applications. The classical Gale-Shapley algorithm produces a marriage that greatly favors the men at the expense of the women, or vice versa. In this paper we apply ACS algorithm to SMP to find 4 kinds of solutions such as stable matching with man-optimal, woman-optimal, egalitarian stable matching, sex-fair stable matching. So this ACS is a novel method to solve Stable Marriage Problem. Our simulation results show the effectiveness of the proposed ACS.

A Pareto Ant Colony Optimization Algorithm for Application-Specific Routing in Wireless Sensor & Actor Networks (무선 센서 & 액터 네트워크에서 주문형 라우팅을 위한 파레토 개미 집단 최적화 알고리즘)

  • Kang, Seung-Ho;Choi, Myeong-Soo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.346-353
    • /
    • 2011
  • Routing schemes that service applications with various delay times, maintaining the long network life time are required in wireless sensor & actor networks. However, it is known that network lifetime and hop count of trees used in routing methods have the tradeoff between them. In this paper, we propose a Pareto Ant Colony Optimization algorithm to find the Pareto tree set such that it optimizes these both tradeoff objectives. As it enables applications which have different delay times to select appropriate routing trees, not only satisfies the requirements of various multiple applications but also guarantees long network lifetime. We show that the Pareto tree set found by proposed algorithm consists of trees that are closer to the Pareto optimal points in terms of hop count and network lifetime than minimum spanning tree which is a representative routing tree.

Object-Based Road Extraction from VHR Satellite Image Using Improved Ant Colony Optimization (개선된 개미 군집 최적화를 이용한 고해상도 위성영상에서의 객체 기반 도로 추출)

  • Kim, Han Sae;Choi, Kang Hyeok;Kim, Yong Il;Kim, Duk-Jin;Jeong, Jae Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.109-118
    • /
    • 2019
  • Road information is one of the most significant geospatial data for applications such as transportation, city planning, map generation, LBS (Location-Based Service), and GIS (Geographic Information System) database updates. Robust technologies to acquire and update accurate road information can contribute significantly to geospatial industries. In this study, we analyze the limitations of ACO (Ant Colony Optimization) road extraction, which is a recently introduced object-based road extraction method using high-resolution satellite images. Object-based ACO road extraction can efficiently extract road areas using both spectral and morphological information. This method, however, is highly dependent on object descriptor information and requires manual designations of descriptors. Moreover, reasonable iteration closing point needs to be specified. In this study, we perform improved ACO road extraction on VHR (Very High Resolution) optical satellite image by proposing an optimization stopping criteria and descriptors that complements the limitations of the existing method. The proposed method revealed 52.51% completeness, 6.12% correctness, and a 51.53% quality improvement over the existing algorithm.

A Multi-objective Ant Colony Optimization Algorithm for Real Time Intrusion Detection Routing in Sensor Network (센서 네트워크에서 실시간 침입탐지 라우팅을 위한 다목적 개미 군집 최적화 알고리즘)

  • Kang, Seung-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.191-198
    • /
    • 2013
  • It is required to transmit data through shorter path between sensor and base node for real time intrusion detection in wireless sensor networks (WSN) with a mobile base node. Because minimum Wiener index spanning tree (MWST) based routing approach guarantees lower average hop count than that of minimum spanning tree (MST) based routing method in WSN, it is known that MWST based routing is appropriate for real time intrusion detection. However, the minimum Wiener index spanning tree problem which aims to find a spanning tree which has the minimum Wiener index from a given weighted graph was proved to be a NP-hard. And owing to its high dependency on certain nodes, minimum Wiener index tree based routing method has a shorter network lifetime than that of minimum spanning tree based routing method. In this paper, we propose a multi-objective ant colony optimization algorithm to tackle these problems, so that it can be used to detect intrusion in real time in wireless sensor networks with a mobile base node. And we compare the results of our proposed method with MST based routing and MWST based routing in respect to average hop count, network energy consumption and network lifetime by simulation.

Bacteria Cooperative Optimization Based on E. Coli Chemotaxis (대장균의 주화성에 근거한 박테리아 협동 최적화)

  • Jeong, Hui-Jeong;Jeong, Seong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.241-244
    • /
    • 2007
  • 본 논문에서는 박테리아의 주화성에 기초한 Bacteria Cooperative Optimization(BCO) 알고리즘을 소개한다. BCO는 Ant Colony Optimization (ACO)처럼 자연계에 존재하는 생명체의 행동양식을 모방하여 만든 최적화 알고리즘으로 크게 초기화, 측정, 행동결정, 이동으로 구성된다. 우리는 먼저 BCO 알고리즘을 설명하고 2차원 함수 최적화 문제를 이용하여 BCO알고리즘과 Genetic Algorithm(GA) 그리고 Bacterial Foraging for Distributed Optimization(BFO)의 성능 측정 결과를 기술한다. 실험 결과 BCO의 성능이 GA나 BFO보다 우수함을 보였다.

  • PDF

Truss Design Optimization using Ant Colony Optimization Algorithm (개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화)

  • Lee, Sang-Jin;Han, Yu-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.709-712
    • /
    • 2010
  • 본 논문은 개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화에 대한 이론적 배경과 수치해석 결과를 기술하였다. 트러스의 설계최적화를 수행하기 위하여 구조물의 중량을 최소화하는 것을 목적 함수로 하고 구조물에서 발생하는 응력과 변위의 허용치를 초과하지 않는 것을 구속조건으로 이용하였다. 본 연구에서는 개미군락알고리즘을 구조물의 최적화에 적용하기 위하여 외판원문제(travelling salesman problem: TSP)를 재 정의하는 방법을 사용하였으며 최대-최소개미시스템(max-min ant system)을 도입하여 트러스 구조물의 최적설계를 수행하였다. 이때 이산화 된 설계변수를 사용하였으며 구속조건을 처리하기 위해서 벌점함수를 사용하였다. 본 연구를 통하여 개미군락최적화 알고리즘은 구조최적화에 그 적용 가능성이 높았으며 전통적인 최적검색 기법의 새로운 대안으로 이용될 수 있는 것으로 나타났다.

  • PDF

Ant Colony Hierarchical Cluster Analysis (개미 군락 시스템을 이용한 계층적 클러스터 분석)

  • Kang, Mun-Su;Choi, Young-Sik
    • Journal of Internet Computing and Services
    • /
    • v.15 no.5
    • /
    • pp.95-105
    • /
    • 2014
  • In this paper, we present a novel ant-based hierarchical clustering algorithm, where ants repeatedly hop from one node to another over a weighted directed graph of k-nearest neighborhood obtained from a given dataset. We introduce a notion of node pheromone, which is the summation of amount of pheromone on incoming arcs to a node. The node pheromone can be regarded as a relative density measure in a local region. After a finite number of ants' hopping, we remove nodes with a small amount of node pheromone from the directed graph, and obtain a group of strongly connected components as clusters. We iteratively do this removing process from a low value of threshold to a high value, yielding a hierarchy of clusters. We demonstrate the performance of the proposed algorithm with synthetic and real data sets, comparing with traditional clustering methods. Experimental results show the superiority of the proposed method to the traditional methods.

Accurate Segmentation Algorithm of Video Dynamic Background Image Based on Improved Wavelet Transform

  • Ming, Ming
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.711-718
    • /
    • 2022
  • In this paper, an accurate segmentation algorithm of video dynamic background image (VDBI) based on improved wavelet transform is proposed. Based on the smooth processing of VDBI, the traditional wavelet transform process is improved, and the two-layer decomposition of dynamic image is realized by using two-dimensional wavelet transform. On the basis of decomposition results and information enhancement processing, image features are detected, feature points are extracted, and quantum ant colony algorithm is adopted to complete accurate segmentation of the image. The maximum SNR of the output results of the proposed algorithm can reach 73.67 dB, the maximum time of the segmentation process is only 7 seconds, the segmentation accuracy shows a trend of decreasing first and then increasing, and the global maximum value can reach 97%, indicating that the proposed algorithm effectively achieves the design expectation.