• Title/Summary/Keyword: Answer Summarization

Search Result 4, Processing Time 0.019 seconds

Question and Answering System through Search Result Summarization of Q&A Documents (Q&A 문서의 검색 결과 요약을 활용한 질의응답 시스템)

  • Yoo, Dong Hyun;Lee, Hyun Ah
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.4
    • /
    • pp.149-154
    • /
    • 2014
  • A user should pick up relevant answers by himself from various search results when using user participation question answering community like Knowledge-iN. If refined answers are automatically provided, usability of question answering community must be improved. This paper divides questions in Q&A documents into 4 types(word, list, graph and text), then proposes summarizing methods for each question type using document statistics. Summarized answers for word, list and text type are obtained by question clustering and calculating scores for words using frequency, proximity and confidence of answers. Answers for graph type is shown by extracting user opinion from answers.

Implementation of Smart E-learning based on Blended Learning (혼합형 학습 기반 스마트 이러닝 구현)

  • Hong, YouSik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • Many countries are establishing and operating blended learning that combines the advantages of online and offline education. However, online education lecture-based Mooc courses have a very low level, with a graduation rate of less than 5-10%. Therefore, in order to increase the graduation rate of students taking online Mooc distance education lectures that anyone can easily take lectures anytime, anywhere on the web-based basis, it is necessary to introduce automatic analysis of students' understanding level of lectures and an automatic academic warning system. Moreover, in order to enter an advanced education country, it is necessary to develop an automatic judgment SW for wrong answer rate, automatic summary SW for lectures, and automatic analysis SW education for lecture-based weak subjects based on mixed learning levels. In order to improve this problem, in this paper, we proposed and simulated an automatic summarization system for lecture contents, an automatic warning system for incorrect answers, and an automatic judgment algorithm for weak subjects.

An Automatically Extracting Formal Information from Unstructured Security Intelligence Report (비정형 Security Intelligence Report의 정형 정보 자동 추출)

  • Hur, Yuna;Lee, Chanhee;Kim, Gyeongmin;Jo, Jaechoon;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.233-240
    • /
    • 2019
  • In order to predict and respond to cyber attacks, a number of security companies quickly identify the methods, types and characteristics of attack techniques and are publishing Security Intelligence Reports(SIRs) on them. However, the SIRs distributed by each company are huge and unstructured. In this paper, we propose a framework that uses five analytic techniques to formulate a report and extract key information in order to reduce the time required to extract information on large unstructured SIRs efficiently. Since the SIRs data do not have the correct answer label, we propose four analysis techniques, Keyword Extraction, Topic Modeling, Summarization, and Document Similarity, through Unsupervised Learning. Finally, has built the data to extract threat information from SIRs, analysis applies to the Named Entity Recognition (NER) technology to recognize the words belonging to the IP, Domain/URL, Hash, Malware and determine if the word belongs to which type We propose a framework that applies a total of five analysis techniques, including technology.

Developing and Pre-Processing a Dataset using a Rhetorical Relation to Build a Question-Answering System based on an Unsupervised Learning Approach

  • Dutta, Ashit Kumar;Wahab sait, Abdul Rahaman;Keshta, Ismail Mohamed;Elhalles, Abheer
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.199-206
    • /
    • 2021
  • Rhetorical relations between two text fragments are essential information and support natural language processing applications such as Question - Answering (QA) system and automatic text summarization to produce an effective outcome. Question - Answering (QA) system facilitates users to retrieve a meaningful response. There is a demand for rhetorical relation based datasets to develop such a system to interpret and respond to user requests. There are a limited number of datasets for developing an Arabic QA system. Thus, there is a lack of an effective QA system in the Arabic language. Recent research works reveal that unsupervised learning can support the QA system to reply to users queries. In this study, researchers intend to develop a rhetorical relation based dataset for implementing unsupervised learning applications. A web crawler is developed to crawl Arabic content from the web. A discourse-annotated corpus is generated using the rhetorical structural theory. A Naïve Bayes based QA system is developed to evaluate the performance of datasets. The outcome shows that the performance of the QA system is improved with proposed dataset and able to answer user queries with an appropriate response. In addition, the results on fine-grained and coarse-grained relations reveal that the dataset is highly reliable.