• 제목/요약/키워드: Anoxic condition

검색결과 130건 처리시간 0.019초

금오지의 수환경 및 부영양화 평가 (Evaluation of Eutrophication and Water Quality in Kumoh Reservoir)

  • 박제철;김동섭;이승환
    • 한국환경과학회지
    • /
    • 제13권4호
    • /
    • pp.389-401
    • /
    • 2004
  • Seasonal and vertical distribution of water quality were investigated from May 2001 to June 2002 in Kumoh reservoir located nearby Kumi City, Kyungpook. Kumoh reservoir that lost the role of agricultural irrigation is currently of rapid eutrophication. The vertical distribution of DO was observed clinograde with hypolimnetic anoxic zone. T-P concentrations at the surface ranged from 0.008 to 0.152 mgP/L and T-N concentrations ranged from 1.4 to 3.0 mgN/L. The vertical and seasonal variation of T-N was smaller than T-P. DOC concentrations, indicator of organic matter pollution, ranged from 2.8 to 5.4 mgC/L. Apportionment of Total-DOC (T-DOC) indicated that 14% of T-DOC was attributed to Labile-DOC(L-DOC) and the rest was due to Refractory-DOC(R-DOC). The values of TSI(Trophic State Index) ranged between 44 and 52 indicating that Kumoh reservoir is under mesotrophic condition. The results of this study indicate that Kumoh reservoir is likely to be under influence of eutrophication and thus water quality will be aggravated. Therefore, the Kumoh reservoir requires further treatment to improve water quality and a plan of the reusing water resource should be developed.

(AO)2 SBBR에서 운전주기에 따른 질소와 인 제거 특성 비교 (Characteristics of Nitrogen and Phosphorus Removal According to the Variation of Operating Cycles in (AO)2 SBBR)

  • 박영식;김동석
    • 한국환경과학회지
    • /
    • 제16권1호
    • /
    • pp.45-53
    • /
    • 2007
  • This study was carried out to investigate the variation of organic, nitrogen and phosphorus in $(AO)_2$ SBBR process according to the variation of operating cycle at the high TOC concentration. The operation time in anoxic (anaerobic) time to oxic time was 1:1. Three lab-scale SBBRS were fed with synthetic wastewater based on glucose as carbon source, The variation of total TOC removal was similar each other irrespective of operation time, however, the TOC concentrations in SBBRs showed a little difference according to the operating condition. In SBBR, complete nitrification was not occurred at all reactors, however, R3 showed a higher nitrification than R2. And in SBBR, the variation of operating time more affected at phosphorus removal than nitrogen removal. R2 which had the shortest time at the 1st aeration time showed the lowest phosphorus release and uptake efficacy.

생물막 여과반응기를 이용한 고도질소 제거를 위한 운전제어법 개발 (Development of Biological Filtration Process for Effective Nitrogen Removal and its Control strategies in Tertiary Treatment of Sewage)

  • 정진우;김성원;津野洋
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.230-237
    • /
    • 2006
  • The operational parameters and control strategies of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. Methanol addition was controlled based on the COD/N ratio or McCarty's equation. Constant COD/N ratio control results in excess addition under large diurnal fluctuation of $NOx^--N$, and McCarty's equation can be used to add appropriate amount of methanol. Control of methanol addition by on-line nitrate measurement, control of aeration by on-line DO measurement, and control of backwashing by head loss measurement are successfully operated. These results proved that this process prove the easy-maintenance and cost-effectively treatment is attainable.

수치실험을 통한 초음파 결합형 SBR 호기성 소화의 거동 예측 (Performance Estimation of SBR Aerobic Digestion Combined with Ultrasonication by Numerical Experiment)

  • 김성홍;김동한;이동우
    • 상하수도학회지
    • /
    • 제27권6호
    • /
    • pp.815-826
    • /
    • 2013
  • Using a developed mathematical model and calibrated kinetic constants, numerical experiments for a aerobic digestion of wastewater sludge by SBR aerobic digestion process combined with ultrasonication (USSBR) were performed in this study. It simulated well the phenomena of the decomposition of particulate organics and the release of organic nitrogen and transformation. To achieve 40 % of particulate organics removal, USSBR process requires only 6 days of SRT and 14 W/L of ultrasonic power whereas SBR aerobic digestion process requires 12 days of SRT. Based on the model simulation results, an empirical equation was presented here. This equation will be used to predict digestion efficiency for the given variables of SRT and ultrasonic power dose. USSBR aerobic digestion process can reduce the nitrogen concentration. The optimal operation strategy for the simultaneous removal of solids and soluble nitrogen in this process is estimated to 7 days of SRT with 14 W/L of ultrasonic power dose while anoxic period was 6 hours out of 24 hours of cycle time. In this condition, 40 % of particulate organics as well as 36 % of total nitrogen will be removed and the soluble nitrogen concentration of the centrate will be lower less then 40 mg/L.

원위치 토양세척 공정의 효율향상을 위한 세제선정과 운전기법 (Selection of Surfactant and Operation Scheme for Improved Efficiency of In-situ Soil Flushing Process)

  • 손봉호;임봉수;어성욱;이병호
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.824-830
    • /
    • 2006
  • Several tests were conducted to optimize the design parameters of ln-situ soil flushing processes for diesel contaminated soil. According to the batch extraction test for three anionic surfactants evaluation, Calgonit limiting bubble occurrence was selected for its higher oil cleaning efficiency. After optimum surfactant selection, there were many sets of column flushing test. Over 70% of BTEX was removed in this surfactant dose with 400% of soil volume. In the case of no surfactant addition flushing in column, so called "blank flushing test", BTEX removal rate was 64%. But when we reused the effluent for the cleaning solution, the removal rate was decreased to 46.9%. This result showed reabsorption of oil occurred on the soil. With the addition of Calgonit solution to the diesel contaminated column, BTEX was removed up to 98.9% during the first flushing and 99.4% for the second recirculation flushing. In microcosm tests, diesel contaminated soils were cleaned by both surfactant flushing and biological activities. In anoxic condition, nitrate was used as an electron acceptor while the surfactant and the oil were used an electron donor. BTEX removal efficiency could be achieved up to 80% by biological degradation.

Wind Effects on the Oyster Farm Environment in Gamak Bay

  • Lee Moon Ock;Park Sung Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제7권4호
    • /
    • pp.204-214
    • /
    • 2004
  • The effect of wind. stresses on the flow and water quality has been examined, particularly focused on the environment of oyster farms in Gamak Bay, by a two dimensional numerical model. In autumn (wind: $45.0^{\circ}$, 4.3 m/s), the overall flow turned out to be stronger than any other seasons and in addition, a pair of anticlockwise and clockwise vortices has been created at the northwest of the bay. Consequently, the wind in autumn seemed efficient not only for growing oyster but also for reducing the water pollution as the flow becomes much more active. In summer an anoxic condition appeared around the northwest of the bay where the flow is stagnant. According to a field survey, the majority of oyster farms tended to be densely distributed around the areas where DO concentration is high. Furthermore, oyster farms with a high production (over 1,300 kg per hanging string of 100 m) were distributed along with approximately 4 of Ch-a concentration. This suggests that oyster production is closely related to the concentration of DO or Ch-a.

탈질 세균의 분리 및 특성 (Isolation and Characterization of Denitrification Bacteria)

  • 차월석;최형일;이동병;차진명
    • KSBB Journal
    • /
    • 제18권6호
    • /
    • pp.461-465
    • /
    • 2003
  • 질소함유 폐수를 생물학적으로 효과적으로 처리하기 위한 전 단계로서 탈질 균을 분리하여 최종 선정된 균주의 분해특성을 조사한 결과 다음과 같은 결론을 얻었다. 분리된 5개 균주 가운데 DWS3가 세포성장과 질산성질소 제거율이 가장 우수하여 최종 분리 균주로 선정하였다. DWS3를 동정한 결과 Pseudomonas DWS로 명명하였다. 반 유동성 사면배지에 배양한 결과 녹색을 띠었으나, 탈질능을 갖는 균주의 활성에 따라 배지의 색이 녹색에서 암녹색으로 변환되었다. Pseudomonas DWS는 4시간 정도의 유도기를 거쳐 18시간에 최대 증식을 나타내었으며, 균의 생육속도와 비례하여 질산성질소의 제거율이 증가하는 것으로 나타났다. Pseudomonas DWS의 온도별 특성은 3$0^{\circ}C$에서 성장과 탈질율이 99% 우수하게 나타났으나, 탈질균 성장에 적합한 초기 pH는 7∼8에서 질산성 질소가 99% 이상 거의 모두 제거되었다. Pseudomonas DWS는 질산성 질소 농도에 관계없이 9시간 이내에 배지의 질산성 질소가 약 50%가 제거되었으며, 18시간 경과 후 99% 이상 질산성 질소가 제거되었다. 따라서 Pseudomonas DWS는 질소화합물을 다량 포함된 하, 폐수의 생물학적 처리에 효과적으로 이용 될 수 있는 것으로 사료된다.

Sorption of I and Se onto Green Rusts with Different Interlayer Anions, GR(CO32-) AND GR(Cl-)

  • Min, J.H.;Baik, M.H.;Lee, J.K.;Jeong, J.T.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.57-63
    • /
    • 2013
  • Natural green rust (GR) can retard the migration of anions through geological media because it has a Layer Double Hydroxyl (LDH) structure with a positive charge. In this study, the sorption behaviors of anions such as selenite ($Se(IV)O{_3}^{2-}$), selenate ($Se(VI)O{_4}^{2-}$), and iodide ($I^-$) onto green rusts with different structures, i.e., GR($Cl^-$) and GR($CO{_3}^{2-}$), were investigated by conducting batch sorption experiments in an anoxic condition. Experimental results showed that selenite was mostly sorbed onto GR($CO{_3}^{2-}$) and then partly reduced to metal selenium, Se(0). However, little selenate and iodide was sorbed onto GR($CO{_3}^{2-}$) while some iodide was sorbed onto GR($Cl^-$). It is presumed from the experimental results that the major sorption mechanism of $SeO{_3}^{2-}$ and $I^-$ onto green rusts is the anion exchange reaction with the anions existing in the interlayer of the rusts. Green rust, therefore, can play an important role in the retardation of anions migrating through deep geological environments owing to its LDH structure with a high anion exchange capacity.

Behaviors of nitrogen, iron and sulfur compounds in contaminated marine sediment

  • Khirul, Md Akhte;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.274-280
    • /
    • 2020
  • The marine sediment sustains from the anoxic condition due to increased nutrients of external sources. The nutrients are liberated from the sediment, which acts as an internal source. In hypoxic environments, anaerobic respiration results in the formation of several reduced matters, such as N2 and NH4+, N2O, Fe2+, H2S, etc. The experimental results have shown that nitrogen and sulfur played an influential, notable role in this biogeochemical cycle with expected chemical reductions and a 'diffusive' release of present nutrient components trapped in pore water inside sediment toward the bulk water. Nitate/ammonium, sulfate/sulfides, and ferrous/ferric irons are found to be the key players in these sediment-waters mutual interactions. Organonitrogen and nitrate in the sediment were likely to be converted to a form of ammonium. Reductive nitrogen is called dissimilatory nitrate reduction to ammonium and denitrification. The steady accumulation in the sediment and surplus increases in the overlying waters of ammonium strongly support this hypothesis as well as a diffusive action of the involved chemical species. Sulfate would serve as an essential electron acceptor so as to form acid volatile sulfides in present of Fe3+, which ended up as the Fe2+ positively with an aid of the residential microbial community.

Sorption characteristics of iodide on chalcocite and mackinawite under pH variations in alkaline conditions

  • Park, Chung-Kyun;Park, Tae-Jin;Lee, Seung-Yeop;Lee, Jae-Kwang
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1041-1046
    • /
    • 2019
  • In terms of long-term safety for radioactive waste disposal, the anionic iodide (I-129) with a long half-life ($1.6{\times}10^6yr$) is of a critical importance because this radionuclide migrates in geological media with limited interactions. Various studies have been performed to retard the iodide migration. Recently, some minerals that are likely generated from waste container corrosion, have been suggested to have a considerable chemical interaction with iodide. In this study, chalcocite and mackinawite were selected as candidate minerals for underground corrosion materials, and an iodide sorption experiment were carried out. The experiment was performed under anoxic and alkaline conditions and the pH effects on the iodide sorption were investigated in the range of pH 8 to 12. The results showed that both minerals demonstrated a noticeable sorption capacity on iodide, and the distribution coefficient ($K_d$) decreased as the pH increased in the experimental condition. In addition, when the alkalinity increased higher than a pH of 12, the sorption capacity of both minerals decreased dramatically, likely due to the competition of hydroxy ions with the iodide. This result confirmed that chalcocite was an especially good sorbing media for iodide under alkaline conditions with a pH value of less than 12.