• 제목/요약/키워드: Anomaly Signal Detection

검색결과 35건 처리시간 0.036초

Abnormal Electrocardiogram Signal Detection Based on the BiLSTM Network

  • Asif, Husnain;Choe, Tae-Young
    • International Journal of Contents
    • /
    • 제18권2호
    • /
    • pp.68-80
    • /
    • 2022
  • The health of the human heart is commonly measured using ECG (Electrocardiography) signals. To identify any anomaly in the human heart, the time-sequence of ECG signals is examined manually by a cardiologist or cardiac electrophysiologist. Lightweight anomaly detection on ECG signals in an embedded system is expected to be popular in the near future, because of the increasing number of heart disease symptoms. Some previous research uses deep learning networks such as LSTM and BiLSTM to detect anomaly signals without any handcrafted feature. Unfortunately, lightweight LSTMs show low precision and heavy LSTMs require heavy computing powers and volumes of labeled dataset for symptom classification. This paper proposes an ECG anomaly detection system based on two level BiLSTM for acceptable precision with lightweight networks, which is lightweight and usable at home. Also, this paper presents a new threshold technique which considers statistics of the current ECG pattern. This paper's proposed model with BiLSTM detects ECG signal anomaly in 0.467 ~ 1.0 F1 score, compared to 0.426 ~ 0.978 F1 score of the similar model with LSTM except one highly noisy dataset.

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • 한국항해항만학회지
    • /
    • 제40권5호
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • 한국항해항만학회지
    • /
    • 제35권9호
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

스마트그리드 네트워크에서 가용성 보장 메커니즘에 관한 연구: 신호정보를 이용한 공격 및 공격노드 검출 (Study on Availability Guarantee Mechanism on Smart Grid Networks: Detection of Attack and Anomaly Node Using Signal Information)

  • 김미희
    • 정보보호학회논문지
    • /
    • 제23권2호
    • /
    • pp.279-286
    • /
    • 2013
  • 최근 전력 수요의 급증으로 인한 전력난은 효율적 전력 사용을 위한 스마트그리드 기술의 중요성을 부각시키고 있다. 스마트그리드 네트워크의 필수구성요소인 스마트미터기의 가용성 취약점에 대한 실험적 내용이 보고되고 있다. 따라서 안전한 스마트그리드의 실현가능성을 위한 가용성 보호 메커니즘 고안이 필수불가결하다. 본 논문에서는 스마트그리드 구조 및 트래픽패턴의 특징 분석을 통해 스마트미터기에 대한 가용성 침해 공격을 탐지하고, 이상 트래픽을 발생하는 공격노드를 검출할 수 있는 메커니즘을 제안한다. 제안하는 탐지 메커니즘은 공격 탐지를 수행하는 시스템의 탐지 부하를 줄이고 적은 샘플 수에도 높은 탐지율을 제공하기 위해 근사엔트로피 기법을 사용한다. 또한 공격노드가 공격트래픽에서 변경할 수 없는 물리정보(CIR 또는 RSSI 등)를 이용하여 공격 탐지 및 공격노드 검출을 수행한다. 마지막으로 본 논문 제안 기법에 대한 시뮬레이션 결과, 탐지 성능과 실현가능성을 보인다.

강자성 표적 탐지를 위한 드론 기반 자기 이상 탐지 (Drone based Magnetic Anomaly Detection to detect Ferromagnetic Target)

  • 임신혁;김동규;윤지훈;김보나;방은석;심규민;이상경;오종식
    • 한국군사과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.335-343
    • /
    • 2023
  • Drone based Magnetic Anomaly Detection measure a magnetic anomaly signal from the ferromagnetic target on the ground. We conduct a magnetic anomaly detection with 9 ferromagnetic targets on the ground. By removing the magnetic field measured in the absence of ferromagnetic targets from the experimental value, the magnetic anomaly signal is clearly measured at an altitude of 100 m. We analyze the signal characteristics by the ferromagnetic target through simulation using COMSOL multiphysics. The simulation results are within the GPS error range of the experimental results.

Hierarchical Flow-Based Anomaly Detection Model for Motor Gearbox Defect Detection

  • Younghwa Lee;Il-Sik Chang;Suseong Oh;Youngjin Nam;Youngteuk Chae;Geonyoung Choi;Gooman Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1516-1529
    • /
    • 2023
  • In this paper, a motor gearbox fault-detection system based on a hierarchical flow-based model is proposed. The proposed system is used for the anomaly detection of a motion sound-based actuator module. The proposed flow-based model, which is a generative model, learns by directly modeling a data distribution function. As the objective function is the maximum likelihood value of the input data, the training is stable and simple to use for anomaly detection. The operation sound of a car's side-view mirror motor is converted into a Mel-spectrogram image, consisting of a folding signal and an unfolding signal, and used as training data in this experiment. The proposed system is composed of an encoder and a decoder. The data extracted from the layer of the pretrained feature extractor are used as the decoder input data in the encoder. This information is used in the decoder by performing an interlayer cross-scale convolution operation. The experimental results indicate that the context information of various dimensions extracted from the interlayer hierarchical data improves the defect detection accuracy. This paper is notable because it uses acoustic data and a normalizing flow model to detect outliers based on the features of experimental data.

드론 기반 자기 이상 탐지를 이용한 해양에서의 강자성 표적 탐지 (Ferromagnetic Target Detection in the Ocean Using Drone-based Magnetic Anomaly Detection)

  • 임신혁;김동규;윤지훈;방은석;오석민;김보나;심규민;이상경
    • 한국군사과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.338-345
    • /
    • 2024
  • Magnetic anomaly signals from the ferromagnetic targets such as ships in the sea are measured by drone-based magnetic anomaly detection. A quantum magnetometer is suspended from the drone by 4 strings. Flight altitude and speed of drone are 100 m and 5 m/s, respectively. We obtain magnetic anomaly signals of few nT from the ships clearly. We analyze the signal characteristics by the ferromagnetic target through simulation using COMSOL multiphysics.

빅데이터를 활용한 이상 징후 탐지 및 관리 모델 연구 (A Study on Anomaly Signal Detection and Management Model using Big Data)

  • 권영백;김인석
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.287-294
    • /
    • 2016
  • APT(Advanced Persistent Threat)공격은 기관, 기업의 정보통신 설비에 대한 중단 또는 핵심정보의 획득을 목적으로 장기간 IT인프라, 업무환경, 임직원 정보 등의 다양한 정보를 수집하고, 이를 바탕으로 제로데이 공격, 사회공학적기법 등을 이용하여 공격을 실행한다. 악성 시그니처 탐지 등의 단편적인 사이버 위협대응 방법으로는 APT 공격과 같이 고도화된 사이버 공격에 대응하기 어렵다. 본 논문에서는 APT 공격 대응 방안 중 하나로 이종 시스템 로그(Heterogeneous System Log)를 빅데이터로 활용하고, 패턴기반 탐지 방법과 이상 징후 탐지 방법을 병합하여 사이버 침해시도를 탐지하는 모델을 제시하고자 한다.

Teager 에너지를 이용한 GPS 위성 시계 도약 검출 (Detection of GPS Clock Jump using Teager Energy)

  • 허윤정;조정호;허문범
    • 한국항공우주학회지
    • /
    • 제38권1호
    • /
    • pp.58-63
    • /
    • 2010
  • 본 논문에서는 GPS 위성시계의 갑작스런 주파수 도약이 발생하였을 때 이를 즉시 검출할 수 있는 기법을 제시한다. GPS 위성은 정밀 위치와 시각 정보를 제공하기 위해 원자시계를 장착하고 있으나, 위성 원자시계는 장기적으로는 이차 함수의 형태를, 단기적으로는 주기가 일정치 않은 주기함수의 형태를 보이면서 가끔씩 신호에 갑작스런 도약 현상이 발생한다. 위성 시계의 이상 현상은 GPS 측정치에 큰 오차를 수반하기 때문에, 실시간 정밀 위치 응용분야에서는 위성시계 이상 신호를 즉시 검출할 수 있는 기법이 요구된다. 이를 위해 다양한 신호처리 분야에서 특정한 신호를 검출하는데 활용되고 있는 Teager 에너지를 적용하였으며, 그 결과 시계 도약 현상을 효과적으로 검출할 수 있었고, 일반적인 위성시계 도약 검출 기법과의 비교를 통해 제시한 기법의 유용성을 확인하였다.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.