• Title/Summary/Keyword: Anomalies of water

Search Result 106, Processing Time 0.025 seconds

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Gravity, Magnetic and VLF explorations in the ubong industrial waste landfill, Pohang (포항 유봉산업 폐기물 매립지에서의 중력, 자력, VLF 탐사)

  • 권병두
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.177-187
    • /
    • 1999
  • Gravity, magnetic and VLF surveys were conducted to investigat the structural stability and hazards associated with the Ubong landfill in Pohang City, which has been built to dump industrial wastes. In 1994, the collapse of a bank happened in the 6th landfill site due to sudden heavy rain, and a large quantity of waste materials flowed out to the nearby landfill sites, factories and roads. We used $10{\times}10m$ resolution DEM data for gravity reductions. The maximum variation of the terrain effect in the survey area is about 0.5 mgal and the terrain effect is large in the vicinity of bank boundary. The Bouguer gravity anomaly map shows the effect due to the variatino of thickness and type of waste materials. The small negative gravity anomaly increases from the 9th site to the 6th site. The small negative gravity anomaly of the 9th site reflects the relatively shallow dumping depth of average 14.5 m in this site and increased density of waste materials by the repeated stabilization process of soil overlaying. The 6th site is located at the center of the former valley and rainfall and groundwater are expected to flow from south-east to north-west. Therefore, considering the previous accident of mixing waste and bank materials at the north-west boundary of the landfill, there may be some environmental problems of leakage of contaminated water and bank stability. The complex inversion technique using Simulated annealing and Marquardt-Levenberg methods was applied to calculate three-dimensional density distribution from gravity data. In the case of 6th site, it is apparent that the landfill had been dumped in four sectors. However, most part of the 9th site and showed that high magnetic industrial wastes were concentrated in the 6th site. The result of magnetic survey showing low magnetic anomalies along the boundaries of two sites is similar to that of gravity data. The VLF data also reveals four divided sectors in the 6th site, and overall anomaly trend indicates the directio of former valley.

  • PDF

Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula

  • Yun, MyungHyun;Choi, ChulUong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • The coastline influenced naturally and artificially changes dynamically. While the long-term change is influenced by the rise in the surface of the sea and the changes in water level of the rivers, the short-term change is influenced by the tide, earthquake and storm. Also, man-made thoughtless development such as construction of embankment and reclaimed land not considering erosion and deformation of coast has been causes for breaking functions of coast and damages on natural environment. In order to manage coastal environment and resources effectively, In this study is intended to analyze and predict erosion in coastal environment and changes in sedimentation quantitatively by detecting changes in coastal line from data collection for satellite images and aerial LiDAR data. The coastal line in 2007 and 2012 was extracted by manufacturing Digital Surface Model (DSM) with Aviation LiDAR materials. For the coastal line in 2009 and 2010, Normalized Difference Vegetation Index (NDVI) method was used to extract the KOMPSAT-2 image selected after considering tide level and wave height. The change rate of the coastal line is varied in line with the forms of the observation target but most of topography shows a tendency of being eroded as time goes by. Compared to the relatively monotonous beach of Taean, the gravel and rock has very complex form. Therefore, there are more errors in extraction of coastlines and the combination of transect and shoreline, which affect overall changes. Thus, we think the correction of the anomalies caused by these properties is required in the future research.

Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis (MODIS 위성영상 기반 ESI와 ROC 분석을 이용한 가뭄위험평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.51-61
    • /
    • 2020
  • Drought events are not clear when those start and end compared with other natural disasters. Because drought events have different timing and severity of damage depending on the region, various studies are being conducted using satellite images to identify regional drought occurrence differences. In this study, we investigated the applicability of drought assessment using the Evaporative Stress Index (ESI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. The ESI is an indicator of agricultural drought that describes anomalies in actual and reference evapotranspiration (ET) ratios that are retrieved using remotely sensed inputs of Land Surface Temperature (LST) and Leaf Area Index (LAI). However, these approaches have a limited spatial resolution when mapping detailed vegetation stress caused by drought, and drought hazard in the actual crop cultivation areas due to the small crop cultivation in South Korea. For these reasons, the development of a drought index that provides detailed higher resolution ESI, a 500 m resolution image is essential to improve the country's drought monitoring capabilities. The newly calculated ESI was verified through the existing 5 km resolution ESI and historical records for drought impacts. This study evaluates the performance of the recently developed 500 m resolution ESI for severe and extreme drought events that occurred in South Korea in 2001, 2009, 2014, and 2017. As a result, the two ES Is showed high correlation and tendency using Receiver Operating Characteristics (ROC) analysis. In addition, it will provide the necessary information on the spatial resolution to evaluate regional drought hazard assessment and and the small-scale cultivation area across South Korea.

Ultra High Resolution Shallow Acoustic Profiling using the Parametric Echo Sounder: Discrimination of Marine Contaminated Sediments and Burial Depth Inspection of the Submarine Cable (비선형 측심기를 이용한 초고해상 천부음향탐사: 오염퇴적층 구분과 해저케이블 매설 검측)

  • Jung, Seom-Kyu;Lee, Yong-Kuk;Kim, Seong-Ryul;Oh, Jae-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1222-1229
    • /
    • 2010
  • Compared to conventional high resolution acoustic profiling, ultra high resolution shallow acoustic profiling using parametric echo sounder is limited in penetration, yet it provides resolution suitable for detailed seabed investigation in the shallow waters. The parametric sub-bottom profiler system provides not only the exact determination of water depth, but also the detailed information about sediment layers and sub-bottom structures. Possible applications include dredging project, search of buried pipeline, ship wrecks, and other artificial objects through the detailed mapping of thickness and structure of the upper sedimentary layers. In this study, contaminated sediments were discriminated by the correlation of ultra high resolution profiles with geologic data. In addition, the burial depth of the submarine cable was measured by the interpretation of acoustic anomalies in the profiles.

Radon distribution in geochemical environment and controlling factors in Radon concentration(Case study) (지구화학환경에서의 라돈농도분포와 라돈농도의 지배요인(사례연구))

  • 전효택
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.189-214
    • /
    • 2000
  • Three study areas of Kwanak campus(Seoul National University), Gapyung and Boeun were selected and classified according to bedrock types in order to investigate soil-gas radon concentrations. Several soil-gas samples showed relatively high radon concentrations in the residual soils which derived from granite bedrock. It also showed that water content of soil and the degree of radioactivity disequilibrium was a secondary factor governing radon emanation and distribution of radon radioactivity. The results of radon concentrations and working levels for forty rooms in Kwanak campus, Seoul National University, showed that indoor basement rooms under poor ventilation condition can be classified as high radon risk zone having more than EPA guideline(4 pCi/L). Some results of section analysis which was surveyed in the fault zone of Kyungju and Gapyung area confirmed the existence of fault-associated radon anomalies with a meaning of radon risk zone.

  • PDF

Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam (사력댐 누수경로 파악을 위한 수리지질과 지구물리 방법의 적용)

  • Song Sung-Ho;Song Yoonho;Kwon Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.92-96
    • /
    • 2005
  • Comprehensive field surveys, including various hydrogeological and geophysical methods, were carried out to appraise the applicability of those methods to a leakage problem at the Sandong earth fill dam in southwestern Korea. The methods applied in the fold site were tracer tests, monitoring of drawdown and leakage with discharge of reservoir water, electrical resistivity surveys using the dipole-dipole array, self-potential (SP), and temperature logging methods. The leakage pattern in the reservoir wall was demonstrated by hydrogeological methods and was further clarified by the geophysical surveys. Leakage turned out to be through the right abutment of the reservoir wall. In this study, we conformed that the electrical resistivity method is effective in detecting the zones favorable to leakage, and SP methods are useful for delineating the leakage pathways themselves, because leaks generate strong streaming-potential anomalies.

Delineation of a fault zone beneath a riverbed by an electrical resistivity survey using a floating streamer cable (스트리머 전기비저항 탐사에 의한 하저 단층 탐지)

  • Kwon Hyoung-Seok;Kim Jung-Ho;Ahn Hee-Yoon;Yoon Jin-Sung;Kim Ki-Seog;Jung Chi-Kwang;Lee Seung-Bok;Uchida Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.50-58
    • /
    • 2005
  • Recently, the imaging of geological structures beneath water-covered areas has been in great demand because of numerous tunnel and bridge construction projects on river or lake sites. An electrical resistivity survey can be effective in such a situation because it provides a subsurface image of faults or weak zones beneath the water layer. Even though conventional resistivity surveys in water-covered areas, in which electrodes are installed on the water bottom, do give high-resolution subsurface images, much time and effort is required to install electrodes. Therefore, an easier and more convenient method is sought to find the strike direction of the main zones of weakness, especially for reconnaissance surveys. In this paper, we investigate the applicability of the streamer resistivity survey method, which uses electrodes in a streamer cable towed by ship or boat, for delineating a fault zone. We do this through numerical experiments with models of water-covered areas. We demonstrate that the fault zone can be imaged, not only by installing electrodes on the water bottom, but also by using floating electrodes, when the depth of water is less than twice the electrode spacing. In addition, we compare the signal-to-noise ratio and resolving power of four kinds of electrode arrays that can be adapted to the streamer resistivity method. Following this numerical study, we carried out both conventional and streamer resistivity surveys for the planned tunnel construction site located at the Han River in Seoul, Korea. To obtain high-resolution resistivity images we used the conventional method, and installed electrodes on the water bottom along the planned route of the tunnel beneath the river. Applying a two-dimensional inversion scheme to the measured data, we found three distinctive low-resistivity anomalies, which we interpreted as associated with fault zones. To determine the strike direction of these three fault zones, we used the quick and convenient streamer resistivity.

Shallow Subsurface Structure of the Yaksoo Area, Ulsan, Korea by Geophysical Surveys (물리탐사기법에 의한 울산광역시 약수지역 천부지하구조 조사)

  • Lee, Jung-Mo;Kong, Young-Sae;Chang, Tae-Woo;Park, Dong-Hee;Kim, Tae-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2000
  • The location and geometry of the Ulsan Fault play important roles in interpreting tectonic evolution of the southeastern part of the Korean Peninsula. Dipole-dipole electrical resistivity surveys and seismic refraction surveys were carried out in the Yaksoo area, Ulsan in order to measure the thickness of the alluvium covering the Ulsan Fault and to find associated fracture zones and possibly the location of its major fault plane. The collected data were analyzed and interpreted. Some results reported previously by others were also used in this interpretation. No low resistivity anomalies were found in the cross-sectional resistivity image of the survey line located in the east of the Dong River. In contrast, well-developed continuous low resistivity anomalies were detected in the west of the Dong River. This strongly suggests that the major fault plane of the Ulsan Fault is located under or in the west part of the Dong River. Two refraction boundaries corresponding to the underground water level and the bottom of the alluvium were found by refraction surveys carried out on the limited part of the east survey line. The thickness of the alluvium was found to be about 30 m. Small faults in the basement rock identified by reflection surveys were not detected by both resistivity and refraction seismic surveys. This might be explained by assuming that low resistivity anomaly is more closely related to the clay contents than the water contents. On the other hand, it may be resulted by the limited resolution of the resistivity and refraction surveys. Detailed study is required to clarify the reason. Resistivity survey is frequently considered to be a good exploration method to detect subsurface faults. However, it appears to be less useful than reflection seismic survey in this work. In dipole-dipole resistivity survey, the number of separation should be increased to survey deeper subsurface with the same resolution. However, signal to noise ratio decreases as the number of separation increases. In this survey area, the signal to noise ratio of up to sixteen separations was good enough based on the statistical properties of measurements.

  • PDF

Two-Dimensional Interpretation of Ear-Remote Reference Magnetotelluric Data for Geothermal Application (심부 지열자원 개발을 위한 원거리 기준점 MT 탐사자료의 2차원 역산 해석)

  • Lee, Tae-Jong;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.145-155
    • /
    • 2005
  • A two-dimensional (2-D) interpretation of MT data has been performed for the purpose of fracture detection for geothermal development. Remote stations have been operated in Kyushu, Japan (480 km apart) as well as in Korea (60 km and 165 km apart in 2002 and 2003 data set, respectively). Apparent resistivity and phase curves calculated by remote processing with the Japan remote data showed enough quality for 2-D inversion for the whole frequency range. Remote reference processing with Korea remote reference data also showed quite good continuity in apparent resistivity and phase curves except some noisy frequency bands; around the power frequency, 60 Hz, and around the dead band $10^{-1}Hz\;Hz\;\~1\;Hz$, where the natural EM signal is known to be very weak. Even though the subsurface showed severe three-dimensional (3-D) characteristics in the survey area so that 2-D inversion by itself could not give enough information for deep geological structures, the 2-D inversion for the 5 survey lines showed several common features. The conductive semi-consolidate mudstone layer is dipping from north to south (about 500 m depth on the south and 200 m on the north most part of the survey area). The boundary between the low (L-2) and high (H-2) resistivity anomalies can be thought as a major fault with strike $N15^{\circ}E$, passing through the sites 206, 112 and 414. The shallow (< 1 km) conductive anomalies (L-4) seem to be fracture zones having strike E-W (at site 105) and $N60^{\circ}W$ (at site 434). And there exists a conductive layer in the western and west-southern part of the survey area in the depth below $2\~3\;km$, for which further investigation is to be needed.