• Title/Summary/Keyword: Anoectochilus formosanus

Search Result 5, Processing Time 0.016 seconds

Inhibitory Effect of Jewel Orchid (Anoectochilus Formosanus) Plantlet Extract against Melanogenesis and Lipid Droplet Accumulation (금선련 조직 배양체 추출물의 멜라닌 합성 및 지방축적 억제 효과)

  • Park, Chang-Min;Joung, Min-Seok;Paek, Kee-Yoeup;Choi, Jong-Wan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • Anoectochilus formosanus, commonly known as "Jewel Orchids", which has been used in traditional folk medicines for feber, pain, and diseases of the lung and liver in Taiwan. We artificially cultured Anoectochilus formosanus plantlet by using the bioreactor culture system for this study from Anoectochilus formosanus. Previously, several studies have been reported on pharmacological activities of lipid-metabolism, hepatoprotective activity, anti-tumor activity and immuno-stimulating effects but other efficacy were not well known as a cosmetic ingredient for skin care. In this study, we investigated the effect of melanogenesis in B16 mouse melanoma cells and lipid droplet accumulation in 3T3-L1 preadipocytes about Anoectochilus formosanus plantlet extract. We report that Anoectochilus formosanus plantlet extract inhibits the cytoplasmic lipid droplet accumulation through adipogenic differentiation of preadipocytes as well as inhibition of tyorsinase activity and melanogenesis. As a result, our findings indicate that Anoectochilus formosanus plantlet extract may be the potential natural ingredient for whitening and slimming cosmetic products.

Direct Multipropagation through Organogenesis from Nodal Explants of Anoectochilus formosanus Hayata

  • Rha, Eui-Shik;Kim, Hyun-Soon;Yoo, Nam-Hee
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.22-25
    • /
    • 1998
  • To establish direct multipropagation through organogenesis from nodal explants of Anoectochilus formosanus Hayata, the nodes were cultured on LS medium containing various concentrations of 6-benzyladenine(BA). High plant regeneration and adventitious bud formation were obtained from supplemented with 4.0mg/l of BA. Plant height was promoted by adding 0.3% activated charcoal. Plantlet regeneration capacity from nodes was depended on nodal parts on the stem, upper position was the best comparing with intermediate and lower.

  • PDF

Evaluation of Metabolic Stability of Kinsenoside, an Antidiabetic Candidate, in Rat and Human Liver Microsomes

  • Rehman, Shaheed Ur;Kim, n Sook;Choi, Min Sun;Luo, Zengwei;Yao, Guangming;Xue, Yongbo;Zhang, Yonghui;Yoo, Hye Hyun
    • Mass Spectrometry Letters
    • /
    • v.6 no.2
    • /
    • pp.48-51
    • /
    • 2015
  • Kinsenoside is a principle bioactive compound of Anoectochilus formosanus. It exhibits various pharmacological effects such as antihyperglycemic, antioxidant, anti-inflammatory, immunostimulating, and hepatoprotective activities and has recently been developed as an antidiabetic drug candidate. In this study, as part of an in vitro pharmacokinetic study, the stability of kinsenoside in rat and human liver microsomes was evaluated. Kinsenoside was found to have good metabolic stability in both rat and human liver microsomes. These results will provide useful information for further in vivo pharmacokinetic and metabolism studies.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF