• Title/Summary/Keyword: Anodizing Surface Treatment

Search Result 80, Processing Time 0.026 seconds

Selection of the Efficient Superfinishing Condition on an Anodized Al7075 Surface in Experimental Design (실험계획법을 이용한 아노다이징 표면 처리된 Al7075 소재의 효율적인 수퍼피니싱 조건 선정에 관한 연구)

  • Lee, Soon-Jong;Choi, Su-Hyun;Cho, Young-Tae;Jung, Yoon-Gyo;Jung, Jong-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.993-998
    • /
    • 2016
  • In today's manufacturing industries, the demand for light non-ferrous materials is considerable due to the need to improve productivity and manufacturability. Since the surface roughness of a material is important for improving the functionality of machined parts, various techniques for surface treatments have been developed to obtain non-ferrous materials with low roughness. A superfinishing method utilizing polishing films is generally applied to the anodized surface of Al7075 in order to improve its roughness. The objective of this research is to determine through experiment the parameters that facilitate the shortest processing time, using a superfinishing method, for reaching a roughness of Ra $0.2{\mu}m$. This objective is met by applying the Taguchi method in the experiments. Through the experiments of superfinishing, the effectiveness of the parameters adopted for the surface treatment is demonstrated.

The Study of Manufacturing the AAO Template and Fabrication of Carbon and Metal Oxide Nanofibers using AAO Template (AAO (Anodized Aluminium Oxide) template 제조 및 이를 이용해 제조한 탄소 및 산화 금속 나노 섬유 물질에 관한 연구)

  • Kim, Cheong;Park, Soo-Gil
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • In this study, we manufactured the anodized alumina oxide (AAO) template and fabricated the carbon nanofibers and manganese oxide nanofibers using AAO template for application to electrochemical capacitor. Pore diameters of the AAO template were increased from 50 to 90 nm by increasing the acid treatment time after two-step anodizing process. Furthermore nanofibers, which is fabricated by AAO template, showed uniform diameter and micro structure. It is suggested that the surface area is larger than commercial electrode material and it is enhancing the energy density by increasing the specific capacitance.

Acid Pickling/polishing of AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • This article reports a new chemical bath for preparing a mirror-like surface of AZ31 Mg alloy. In order to find an appropriate chemical polishing solution, four different acidic solutions of sulphuric acid, nitric acid, acetic acid and a specially designed mixture of nitric acid and acetic acid were investigated in view of the changes in surface appearance, roughness and dissolution rate of AZ31 Mg alloy. The surface scales on AZ31 Mg alloy were readily removed by all the acidic solutions, but a reflective surface was produced only by etching in the specially designed solution, and only after a specific etching time. The surface roughness increased with etching time in sulphuric acid, nitric acid, and acetic acid, but it lowered after a specific etching time in the specially designed mixture of nitric acid and acetic acid. Dissolution rate of the alloy in the specially designed mixture of nitric acid and acetic acid appeared to be more than twice than that in separate nitric acid or acetic acid. In this work, we recommend the mirror-like surface of AZ31 Mg alloy obtained by polishing for an optimum time in a mixture of nitric acid and acetic acid for following surface finishings, chemical conversion coating, electroplating, electrophoretic painting and anodizing treatment.

Electrochemical hydrothermal treatment on Pure Titanium by the method of Cathodic reduction (음극환원법에 의한 Pure Ti의 전기화학적 열수처리)

  • Song, Jae-Joo;Kim, Kyeong-Seon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.7 no.4
    • /
    • pp.471-479
    • /
    • 2007
  • The purpose of this study was to examine the optimum condition of impulse during the anodic spark oxidation applying pulse current as well as to find the excellent condition for HA precipitation the after electrochemical hydrothermal treatment by cathode reduction method. After anodic spark oxidation, the anodized specimen and the Pt plate connected cathode and anode, respectively. Hydrothermal treatment performed at 90, 120, $150^{\circ}C$ for 2 hours in the electrolyte containing $K_2HPO_4$, $CaCl_2{\cdot}2H_2O$, Tris(Hydroxymethyl)-$(CH_2OH)_3\;CNH_2$(Aminomethane), and NaCl. The optimum impulse voltage for anodic spark oxidation was 350V. The optimum pulse cycle measured at 10 mS. The HA crystals precipitated excellently by cathode reduction at $150^{\circ}C$ for 2 hours. The phases of anatase, rutile, and HA coating on the surface of modified titanium surface immersed in Hanks' solution for 3weeks were detected by XRD measurement and the intensity of HA crystal phase has increased by temperature and time of hydrothermal treatment. According to the our experiments, we found that Pure Ti will be good materials of bioactivity and biocompatibility.

  • PDF

STUDY ON THE ENHANCING MICRO-ROUGHNESS OF POROUS SURFACED DENIAL IMPLANT THROUGH ANODIZATION (양극산화처리를 통한 다공성 임플랜트 표면의 표면거칠기 증대에 대한 연구)

  • Yoon, Tae-Ho;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.617-627
    • /
    • 2006
  • Statement of problem: HA has been used as a coating material on Ti implants to improve osteoconductivity. However. it is difficult to form uniform HA coatings on implants with complex surface geometries using a plasma spraying technique. Purpose : To determine if Ti6Al4V sintered porous-surfaced implants coated with HA sol-gel coated and hydrothermal treated would accelerate osseointegration. Materials and Methods : Porous implants which were made by electric discharge were used in this study. Implants were anodized and hydrothermal treatment or HA sol-gel coating was performed. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. To make a HA sol, triethyl phosphite and calcium nitrate were diluted and dissolved in anhydrous ethanol and mixed. Then anodized implant were spin-coated with the prepared HA sols and heat treated. Samples were soaked in the Hanks solution with pH 7.4 at $37^{\circ}C$ for 6 weeks. The microstructure of the specimens was observed with a scanning electron microscope (SEM), and the composition of the surface layer was analyzed with an energy dispersive spectroscope (EDS). Results : The scanning electron micrographs of HA sol-gel coated and hydrothermal treated surface did not show any significant change in the size or shape of the pores. After immersion in Hanks' solution the precipitated HA crystals covered macro- and micro-pores The precipitated Ca and P increased in Hanks' solution that surface treatment caused increased activity. Conclusion : This study shows that sol-gel coated HA and hydrothermal treatment significantly enhance the rate of HA formation due to the altered surface chemistry.

THE EVALUATION OF THE REMOVAL TORQUE AND THE HISTOMORPHOMETRY OF THE CA-P COATING SURFACE IN RABBIT TIBIA (가토 경골에 식립된 Ca-P 박막코팅 임프란트의 뒤틀림 제거력 및 조직형태학적 평가)

  • Kwak Myeong-Bae;Lee Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.556-571
    • /
    • 2004
  • Statement of problem: Surface texture of the implant is one of the important factors of the implant success, especially in the immediate implant loading. Many methods of the surface treatment of implant have developed and introduced. Purpose : This study was to evaluate the effects of the Ca-P coating implant crystallized the hydroxyapatite on the surface by the removal torque test and the histomorphometric analysis in vivo. Material and methods: 135 screw type implants, 4.0mm in length and 3.75mm in diameter were used in this study. Implants were divided into 3 groups and treated in the different mothods. Group I was not treated, Group II was treated in the SLA method, and Group III was treated in the Ca-P coating with the anodizing method and the hydroxyapatite was crystallized on the surface with the hydrothermal treatment. Firstly, the surface roughness of each group was measured, 45 rabbits were used in this experiment. Two implants were inserted on right tibial metaphysis and one implant was inserted on left side with the alternating order. After the healing periods of 3, 5, and 12 weeks, the rabbits were sacrificed to evaluate the osseointergration by the removal torque test and the histomorphometric analysis. Results : 1. In the analysis for the surface roughness, Group II showed the highest roughness. And Group III showed higher secondly. There was a significant difference one another statistically 2. In the removal torque test, Group III and II were significantly higher than Group I. There was no statistical difference between Group III and Group II. 3. For all Groups, the removal torque values at 12th week were significantly higher than at 3rd and 5th week. 4. In histomorphometric analysis, the bone implant contact rates of Group III and II were higher than that of Group I at 3rd and 5th week. There was a significant difference at 5th week. 5. In histomorphometric analysis, the bone implant contact rate of Group III and II increased from 3rd week to 5th week, but decreased at 12th week. In Group I, the contact rate at 12th week was significantly higher than at 3rd week and 5th week.

A Study on the fracture behavior of surface treated Al 5083-H131 alloy under the high velocity impact (표면처리된 Al 5083-H131 합금의 고속 충격 거동에 관한 연구)

  • 손세원;김희재;홍성희;황도연
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.820-824
    • /
    • 1997
  • In order to investigate the effect of surface treatment(Anodizing) and rolling in Al 5083-H131 alloy, ballistic testing was conducted. Ballistic resistance of these materials. was measured by protection ballistic limit(V$_{50}$), a statical velocity with 50% probability for incomplete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed respectfully, resulting from V$_{50}$ test and Projectile Through Plates(PTP) test at velocities greater than V$_{50}$. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature were also conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes of Al 5052-H34 alloy, compared to those of Al 5083-H131 alloy.alloy.

  • PDF

The study of Arc Anodizing Sufrace treatment in Magnesium Alloy (마그네슘합금의 아크-아노다이징 표면처리에 대한 연구)

  • Yu, Jae-In;Im, Jin-Hwan;Yu, Jae-Yong;Kim, Jin-Hui;Kim, Jae-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.101-102
    • /
    • 2007
  • 마그네슘합금은 산화가 잘되는 비철금속으로 표면처리 공정이 필수적이며, 주로 크로메이트공정이 주로 이용된다. 하지만 최근에 6가 크롬의 사용 규제로 인하여 non-크로메이트 방법 중 내식성이 우수한 아노다이징 공정에 대해 많은 연구가 진행중이다. 일반적으로 아노다이징 용액으로 잘 알려진 NaOH, $Na_3PO_4$ 및 KOH 용액에 코발트 아세테이트와 황화암모늄(Ammouium Sulfide)을 추가함에 따라 용액의 빛깔은 검정색으로 변하고 아크-아노다이징 후의 산화막의 색깔은 갈색을 띠었다.

  • PDF

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

Bone formation following dental implant placement with augmentation materials at dehiscence defects in dogs : pilot study (성견의 열개형 골결손 부위에 골형성 유도술식을 동반한 임플란트 식립 후의 골형성 : pilot study)

  • Jeong, Ji-Yun;Sohn, Joo-Yeon;Chai, Kyung-Jun;Kim, Sung-Tae;Chung, Sung-Min;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • Purpose: Guided bone regeneration(GBR) has emerged as a treatment in the management of osseous defects associated with dental implants. But several studies have reported different degrees of success of guided bone regeneration, depending upon the type of barrier selected, presence or absence of an underlying graft material, types of graft material, feasibility of technique, and clinician's preference. The aim of the present study was to evaluate bone formation following dental implant placement with augmentation materials at dehiscence defects in dogs. Material and Methods: Standardized buccal dehiscence defects($3{\times}5\;mm$) were surgically 2 Mongrel dog's mandibles, each 8 SLA surface, 8 anodizing surface implants. Each buccal dehiscence defect received flap surgery only(no treatment, control), $Cytoflex^{(R)}$ membrane only, Resolut $XT^{(R)}$ membrane only, Resolut $XT^{(R)}+Osteon^{TM}$. Animals were sacrificed at 8 weeks postsurgery and block sections were harvested for histologic analysis. Resuts: All experimental group resulted in higher bone formation than control. Resolut $XT^{(R)}+Osteon^{TM}$ group resulted appeared highest defect resolution. There was no difference between SLA and anodizing surface, nonresorbable and resorbable membrane. Conclusion: GBR results in rapid and clinically relevant bone closure on dehiscence defects of the dental implants.