• Title/Summary/Keyword: Anodized films

Search Result 62, Processing Time 0.025 seconds

Effect of Silane Coupling Treatment on the Joining and Sealing Performance between Polymer and Anodized Aluminum Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.122-131
    • /
    • 2021
  • In the fabrication of joined materials between anodized aluminum alloy and polymer, the performance of the metal-polymer joining is greatly influenced by the chemical properties of the oxide film. In a previous study, the dependence of physical joining strength on the thickness, structure, pore formation, and surface roughness of films formed on aluminum alloys is investigated. In this study, we investigated the effect of silane coupling treatment on the joining strength and sealing performance between aluminum alloy and polymer. After a two-step anodization process with additional treatment by silane, the oxide film with chemically modified nanostructure is strongly bonded to the polymer through physical and chemical reactions. More specifically, after the two-step anodization with silane treatment, the oxide film has a three-dimensional (3D) nanostructure and the silane components are present in combination with hydroxyl groups up to a depth of 150 nm. Accordingly, the joining strength between the polymer and aluminum alloy increases from 29 to 35 MPa, and the helium leak performance increases from 10-2-10-4 to 10-8-10-9 Pa ㎥ s-1.

Temperature cycling test of Cu films on anodized aluminum substrate of metal-PC application

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.334-334
    • /
    • 2011
  • We applied N-ion bombardment and heat treatment to the Cu thin films deposited on aluminum oxide layer for the enhancement of adhesion. With e-beam evaporation method. $1,000{\AA}$ thick Cu pre-bombardment layer was deposited on the aluminum oxide surface and then N-ion beam was bombared in order to mix the atoms at the film/substrate interface. Additional $4,000{\AA}$-thick Cu film was the coated. Subsequently, the ion mixide Cu on aluminum oxide was annealed at $200^{\circ}C$ and $300^{\circ}C$ in vacuum.

  • PDF

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Formation of Nanoporous TiO2 Thin Films on Si by Anodic Oxidation (양극산화에 의한 나노다공성 TiO2 박막 생성)

  • Yoon, Yeo-Jun;Kim, Do-Hong;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.655-659
    • /
    • 2010
  • Nanoporous titanium dioxide ($TiO_2$) is very attractive material for various applications due to the high surface to volume ratio. In this study, we have fabricated nanoporous $TiO_2$ thin films on Si by anodic oxidation. 500-nm-thick titanium (Ti) films were deposited on Si by using electron beam evaporation. Nanoporous structures in the Ti films were obtained by anodic oxidization using ethylene glycol electrolytes containing 0.3 wt% $NH_4F$ and 2 vol% $H_2O$ under an applied bias of 5 V. The diameter of nanopores in the Ti films linearly increased with anodization time and the whole Ti layer could become nanoporous after anodizing for 3 hours, resulting in vertically aligned nanotubes with the length of 200~300 nm and the diameter of 50~80 nm. Upon annealing at $600^{\circ}C$ in air, the anodized Ti films were fully crystallized to $TiO_2$ of rutile and anatase phases. We believe that our method to fabricate nanoporous $TiO_2$ films on Si is promising for applications to thin-film gas sensors and thin-film photovoltaics.

Electrolyte Temperature Dependence on the Properties of Plasma Anodized Oxide Films Formed on AZ91D Magnesium Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.288-296
    • /
    • 2019
  • The passivation of AZ91D Mg alloys through plasma anodization depends on several process parameters, such as power mode and electrolyte composition. In this work, we study the dependence of the thickness, composition, pore formation, surface roughness, and corrosion resistance of formed films on the electrolyte temperature at which anodization is performed. The higher the electrolyte temperature, the lower is the surface roughness, the smaller is the oxide thickness, and the better is the corrosion resistance. More specifically, as the electrolyte temperature increases from 10 to $50^{\circ}C$, the surface roughness (Ra) decreases from 0.7 to $0.15{\mu}m$ and the corrosion resistance increases from 3.5 to 9 in terms of rating number in a salt spray test. The temperature increase from 10 to $50^{\circ}C$ also causes an increase in magnesium content in the film from 25 to 63 wt% and a decrease in oxygen from 66 to 21 wt%, indicating dehydration of the film.

Preparation and Properties of Y2O3-Doped ZrO2 Films on Etched Al Foil by Sol-Gel Process

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.107-112
    • /
    • 2015
  • The oxide films formed on etched aluminum foils play an important role as dielectric layers in aluminum electrolytic capacitors. $Y_2O_3$-doped $ZrO_2$ (YZ) films were coated on the etched aluminum foils by sol-gel dip coating, and the electrical properties of YZ-coated Al foils were characterized. YZ films annealed at $450^{\circ}C$ were crystallized into a cubic phase, and as the $Y_2O_3$ doping content increased, the unit cell of $ZrO_2$ expanded and the grain size decreased. The etch pits of Al foils were filled by YZ sol when it dried at atmospheric pressure after repeating for several times, but this step could essentially be avoided when being dried in a vacuum. YZ-coated foils indicated that the specific capacitance and dissipation factor were $2-2.5{\mu}F/cm^2$ and 2-4 at 1 kHz, respectively, and the leakage current and withstanding voltage of films approximately 200 nm thick were $5{\times}10^{-4}A$ at 21 V and 22 V, respectively. After being anodized at 500 V, the foils exhibited a specific capacitance and dissipation factor of $0.6-0.7{\mu}F/cm^2$ and 0.1-0.2, respectively, at 1 kHz, while the leakage current and withstanding voltage were $2{\times}10^{-4}-3{\times}10^{-5}A$ at 400 V and 420-450 V, respectively. This suggests that YZ film is a promising dielectric that can be used in high voltage Al electrolytic capacitors.

Effect of Hot Water and Heat Treatment on the Apatite-forming Ability of Titania Films Formed on Titanium Metal via Anodic Oxidation in Acetic Acid Solutions

  • Cui, Xinyu;Cui, Xinyu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile.The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  • PDF

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

Preparation and Photocatalytic Characteristics of $TiO_2$ by Anodic Oxidation Process (양극산화법에 의한 광촉매용 $TiO_2$제조 및 특성)

  • Jang, Jae-Myeong;Kim, Seong-Gap;O, Han-Jun;Lee, Jong-Ho;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 2001
  • $TiO_2$films for photocatalytic reaction were synthesized by anodizing process. The photocatalytic efficiencies of anodized $TiO_2$were evaluated by the rate of decomposition of aniline blue. The properties of photocatalysis on anodic $TiO_2$films have been observed, but the efficiencies of photocatalytic reaction depended on the conditions of films formation. The microstructure of the anodic film formed in $H_2SO_4$ solution differed from that of $TiO_2$films formed in $H_2SO_4+H_3PO_4$ solution. It has been shown that the appropriate applied-voltage for anodizing of titanium for photocatalysis was 180V in both aqueous solutions.

  • PDF

Structuyal and physical properties of thin copper films deposited on porous silicon (다공성 실리콘위에 증착된 Cu 박막의 구조적 물리적 특성)

  • 홍광표;권덕렬;박현아;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.123-129
    • /
    • 2003
  • Thin transparent Cu films in the thickness range of 10 ~ 40 nm are deposited by rf-magnetron sputtering on porous silicon (PS) anodized on p-type silicon in dark. Microstructural features of the Cu films are investigated using SEM, AFM and XRD techniques. The RMS roughness of the Cu films is found to be around 1.47 nm and the grain growth is columnar with a (111) preferred orientation and follows the Volmer-Weber mode. The photoluminescence studies showed that a broad luminiscence peak of PS near the blue-green region gets blue shifted (~0.05 eV) with a small reduction in intensity and therefore, Cu-related PL quenching is absent. The FTIR absorption spectra on the PS/Cu structure revealed no major change of the native PS peaks but only a reduction in the relative intensity. The I-V characteristic curves further establish the Schottky nature of the diode with an ideality factor of 2.77 and a barrier height of 0.678 eV. An electroluminiscence (EL) signal of small intensity could be detected for the above diode.