• Title/Summary/Keyword: Anodized Al

Search Result 97, Processing Time 0.025 seconds

Effect of Al2O3-ZrO2 Composite Oxide Thickness on Electrical Properties of Etched Al Foil

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2016
  • To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, $Al_2O_3$, was partly replaced by an $Al_2O_3-ZrO_2$ (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al-Zr composite layer, and an outer $Al_2O_3$ layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with $ZrO_2$ coating were 36.3% and 27.5% higher than those of samples without $ZrO_2$ coating when anodized at 100 V and 600 V, respectively.

A Study on the ballistic performance and fracture mode of anodized Aluminum 5052-H34 alloy laminates (알루미늄 5052-H34 합금 적층재의 방탄성능과 파괴모드에 관한 연구)

  • 손세원;김희재;박영의;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.507-512
    • /
    • 2000
  • The ob.jective of this study is to determine fracture behaviors(penetrati0n modes) and resistance to penetration duringballistic impact of Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates. Resistance to penetration is determined by $V_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed that result from V50 test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0" obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with 0" obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of A1 5052-H34 alloy laminates compared to those of anodized Al 5052-H34 alloy laminates.y laminates.

  • PDF

A Study on the ballistic impact resistance and dynamic failure behavior of aramid FRMLs by high velocity impact (고속충격에 의한 아라미드 섬유강화 금속적층재의 방탄성능 및 동적파손거동에 관한 연구)

  • 손세원;이두성;김동훈;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-532
    • /
    • 2000
  • The armor composite material targets such as aramid FRMLs with different type and ply number of face material and different type of back-up material, were studied to determine ballistic impact resistance and dynamic failure behavior during ballistic impact. Ballistic impact resistance is determined by $\textrm{V}_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Also dynamic failure behaviors are respectfully observed that result from $\textrm{V}_{50}$ tests. $\textrm{V}_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during high velocity impact tests. As a result, ballistic impact resistance of anodized Al 5052-H34 alloy(2 ply) is better than that of anodized Al 5052-H34 alloy(1 ply), but Titanium alloy showed the similar ballistic impact resistance. In the face material, ballistic impact resistance of titanium alloy is better than that of anodized Al 5052-H34 alloy. In the back-up material, ballistic impact resistance of T750 type aramid fiber is better than that of CT709 type aramid fiber.

  • PDF

PbSCC of Ni-base Alloys in PbO-added Pure Water

  • Kim, Joung Soo;Yi, Yong-Sun;Kwon, Oh Chul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.316-321
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

A Study on the Charactristics od Hard Anodizing fikm of Al-Si Pistom Alloys (Al-Si계 피스톤 합금의 경질양극산화피막의 특성에 관한 연구)

  • 문종환;이진형;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.1
    • /
    • pp.34-43
    • /
    • 1990
  • Al-Si piston alloys such as AlS10CuMg have been anodized to examine apossibility of forming a hard film aat relatively higher temperatures compard with those in conventional sulfuric acid processes. Three types of electrolytes have been employed in this study ; electrolyte A(15% H2SO4, $0^{\circ}C$), electrolyte B(12% H2SO4, 1% oxalic, $10^{\circ}C$), electrolyte C(tartaric acid 125g/L+oxalic 75g/L+aluminum sulfate 225g/L, $25^{\circ}C$). Hard anodisine process in electrolyte B at a current density of 1.54A/dm2 produced a harder film of VHN 396 at a relatibely low film forming voltage compared with those obtained in other electrolyte at equivalent current density. A liner relationship between hardness and abrasion resistance exists for Al-Si piston alloys. The hardness of anodized film decreasees with increasing silicon content in Al-Si alloys and also with bath temperature. The film hardeness of Na-modified alloy os higher than that of P-modified alloy due to its finer microstructre. The film on the silicon phase in Al-Si alloys is observed to be formed by lateral growth of oxide film nucleated at surroundings.

  • PDF

Tribological Characteristics of Anodized Al 6061 Under Deinoized Water Lubricated Reciprocating Condition (양극산화 알루미늄 합금6061의 초순수 물 윤활에서의 트라이볼로지적 특성)

  • Jeong, Junho;Cho, Minhaeng
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.59-64
    • /
    • 2017
  • This study investigates friction and wear characteristics of anodized aluminum (Al) alloy 6061 by using a reciprocating tribotester. The diameter and height of the specimen are 30 mm and 10 mm, respectively. The surface roughness of the mirrored-surface is approximately $0.01{\sim}0.02{\mu}m$, and it is used throughout the current study. As a result of anodizing, the depth and diameter of the nanopore are approximately $25{\mu}m$ and 30-40 nm, respectively. The testing conditions are as follows: loads of 1, 3, and 5 N; a frequency of 1 Hz; a stoke of 3 mm; and a duration of 1800 s. We use deionized water with a volume of approximately $25{\mu}l$, as the lubricant. Micro Vickers hardness measurements show that mirrored-surface specimens had lower hardness values than anodized specimens. Further, their coefficients of friction are lower than those of the anodized samples, and the width of their wear track increases with load, as expected. The anodized specimens' coefficients of friction increase with stable frictional behavior and exhibit insignificant load dependence. Further, we observe that the width of the wear track is less than that of the mirrored-surface specimens, and micro cracks are present near it. Moreover, the anodizing process increases the hardness of the samples, improving their wear resistance. These results indicate that nanoporous structures are not effective in lowering friction under the water-lubricated condition.

Effect of Anodizing and Dyeing Treatments on Coloring of Al-Mg (Al-Mg합금의 컬러에 미치는 양극산화 및 착색처리의 영향)

  • Bae, Sung Hwa;Lee, Hyun Woo;Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we investigated the effects of anodizing time, dyeing treatment time, and variations in coloring concentration on the color of an AA5052 alloy processed by dye-treated anodizing. The outward color of the anodized film changed to deep red according to increases in anodizing time, dyeing treatment time, and coloring concentration; accordingly, lightness $L^*$ decreased and saturation $a^*$ and $b^*$ increased. The concentration of the dye and the UV-visible absorbance showed a nearly perfect linear relationship, allowing a quantitative analysis of the absorbed dye. Because the quantity of absorbed dye increased as anodizing time, dyeing treatment time, and coloring concentration increased, the outward color of the anodized film deepened. In addition, from the GD-OES depth profile, we found that the dye was preferentially absorbed on the surface of the porous anodized film.