• Title/Summary/Keyword: Anodized

Search Result 338, Processing Time 0.02 seconds

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.

Characteristics of Fluoride Releasing of Anodized Titanium Implant (양극산화 아크방전 처리한 티타늄 임플란트의 불소방출 특성)

  • Kim, Ha-young;Song, Kwang-yeob;Bae, Tae-sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • The purpose of this study is to make porous oxide film on the surfaces of pure Ti through anodic spark discharge in electrolytic solution containing calcium and phosphate ions, to improve osseointergration by treating fluoride agent. In addition, it is to evaluate the fluoride modified effect on the surface. Commercial pure Ti plate with $20{\times}10{\times}2mm$ and Ti wire with a diameter of 1.5mm and a total length of 15mm were used. After making titanium oxide films converted by anodic spark discharge, anodizing was performed. Fluoride was spreaded to titanium laboratory plate and maintained for 30 minutes after anodizing breakdown. Fluoride ion discharge amount was measured per 24 hours after dipping titanium plate into saline (10ml) and sustaining 90rpm in a pyrostat. Some plates and wires were dipped in Hanks solutions for a month to examine biocompatibility using SEM and XRD. $TiO_2$ film formed by anodic discharge technique showed great roughness and uniform pores which were $1{\sim}3{\mu}m$ in a diameter. Roughness of the films treated with anodic discharge after blasting were higher than the turned ones(P<0.05). Rapid surface activity was observed in the samples treated with $TiF_3$ agent, which immersed in Hanks solution for 30 days. Taking the results into consideration, the fluoride modified implant with anodic discharge demonstrates that it makes uniformly porous oxide film on the surface of implant and properly increase roughness for osseointegration. The implants will achieve greater bone integration after short healing time by improving surface activity.

Annealing Temperature Dependence on Anodizing Properties of ZrO2/Al Films Prepared by Sol-gel Method (졸-겔법으로 제조된 ZrO2/Al막의 열처리 온도에 따른 양극산화 특성)

  • 박상식;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.909-915
    • /
    • 2003
  • Anodic oxide films on aluminum play an important role as a dielectrics in aluminum electrolytic capacitor. In order to obtain the high capacitance, ZrO$_2$ films were coated on aluminum foils by sol-gel method and then, the properties of anodized films were studied. The coating and drying of the films were repeated 4-10 times and annealed at 300~$600^{\circ}C$ and the triple layer of ZrO$_2$/Al-ZrO$_{x}$ /Al$_2$O$_3$ was formed onto aluminum substrates after anodizing of ZrO$_2$/Al film. The thickness of $Al_2$O$_3$ layer was decreased with increasing the annealing temperature due to the densification of ZrO$_2$ film. The ZrO$_2$ films were crystallized even at 30$0^{\circ}C$ and showed nanocrystalline structure. The. capacitance of aluminum foil annealed at low temperature was higher than that at high temperature. The increase of capacitance was due to the high capacitance of ZrO$_2$ film annealed at low temperature. The capacitance of ZrO$_2$ coated aluminum increased about 3 times compared to that without a ZrO$_2$ layer after anodizing to 400 V. From these results, the aluminum foils with composite oxide layers are found to be applicable to the aluminum electrolytic capacitor.

Aesthetic implant restoration with alveolar bone graft and digital method on maxillary central incisor: a case report (치조골이식과 디지털 방법을 활용한 상악 중절치 임플란트 심미 수복 증례)

  • Jang, Han-Sol;Pyo, Se-Wook;Kim, Sunjai;Chang, Jae-Seung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.168-174
    • /
    • 2022
  • In case of gingival recession or bone defect in maxillary anterior implant treatment, it is not easy to obtain satisfactory clinical results. In this case, loss of the labial alveolar plate was diagnosed in the maxillary right central incisor, so after tooth extraction, soft tissue was secured and implant placement with bone graft was planned. In addition, digital guide surgery was performed for the ideal implant position, and GBR (Guided Bone Regeneration) was accompanied with the xenogeneic bone and the autologous bone collected from the mandibular ramus since alveolar bone defects were extensive. After a sufficient period of osseointegration of the implant, a temporary prosthesis was fabricated through secondary stage surgery and impression taking, and through periodic external adjustment, the shape of soft tissue was improved. In the final prosthesis fabrication, a color tone of natural teeth was induced by an gold anodized customized abutment, and an aesthetic and functional zirconia prosthesis with reproducing the shape of the temporary prosthesis through intraoral scan was delivered.

Gas Sorption Analysis of Metal-organic Frameworks using Microresonators (마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석)

  • Kim, Hamin;Choi, Hyun-Kuk;Kim, Moon-Gab;Lee, Young-Sei;Yim, Changyong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are porous materials with nano-sized pores. The degree of gas adsorption and pore size can be controlled according to types of metal ions and organic ligands. Many studies have been conducted on MOFs in the fields of gas storage and separation, and gas sensors. For rapid and quantitative gas adsorption/desorption analyses, it is necessary to form various MOF structures in uniform films on a sensor surface. In this review, some of representative direct methods for uniformly synthesizing MOFs such as MIL-53 (Al), ZIF-8, and Cu-BDC from anodized aluminum oxide, zinc oxide nanorods, and copper thin films, respectively on the surface of a microresonator are highlighted. In addition, the operation principle of quartz crystal microbalance and microcantilever, which are representative microresonators, and the interpretation of signals that change when gas is adsorbed to MOFs are covered. This is intended to enhance the understanding of gas adsorption/desorption analysis of MOFs using microresonators.

Histomorphometric study of machined titanium implants and calcium phosphate coated titanium implants (Machined 티타늄 임플란트와 calcium phosphate coated 티타늄 임플란트의 조직형태계측학적 연구)

  • Kang, Hyun-Joo;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.122-127
    • /
    • 2010
  • Purpose: The objective of this study was to investigate the effects of calcium phosphate coated titanium implant surface on bone response and implant stability at early stage of healing period of 3 weeks and later healing period of 6 weeks. Material and methods: A total of 24 machined, screw-shaped implants (Dentium Co., Ltd., Seoul, Korea) which dimensions were 3.3 mm in diameter and 5.0 mm in length, were used in this research. All implants (n = 24), made of commercially pure (grade IV) titanium, were divided into 2 groups. Twelve implants (n = 12) were machined without any surface modification (control). The test implants (n = 12) were anodized and coated with thin film (150nm) of calcium phosphate by electron-beam deposition. The implants were placed on the proximal surface of the rabbit tibiae. The bone to implant contact (BIC) ratios was evaluated after 3 and 6 weeks of implant insertion. Results: The BIC percentage of calcium phosphate coated implants ($70.8{\pm}18.9%$) was significantly higher than that of machined implants ($44.1{\pm}16.5%$) 3 weeks after implant insertion (P = 0.0264). However, there was no significant difference between the groups after 6 weeks of healing (P > .05). Conclusion: The histomorphometric evaluation of implant surface revealed that; 1. After 3 weeks early healing period, bone to implant contact (BIC) percentage of calcium phosphate coated implants (70.8%) was much greater than that of surface untreated machined implants (44.1%) with P = 0.0264. 2. After 6 weeks healing period, however, BIC percentage of calcium phosphate coated implants group (79.0%) was similar to the machined only implant group (78.6%). There was no statistical difference between two groups (P = 0.8074). 3. We found the significant deference between the control group and experimental group during the early healing period of 3 weeks. But no statistical difference was found between two groups during the later of 6 weeks.

On the osseointegration of zirconia and titanium implants installed at defect site filled with xenograft material (이종골 이식을 동반한 지르코니아와 타이타늄 임플란트의 골유착에 관한 연구)

  • Kim, Sung-Won;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Purpose: The purpose of this study was to compare zirconia implants with titanium implants from the view point of biomechanical stability and histologic response on osseointegration when those were placed with xenograft materials. Materials and methods: Specimens were divided into two groups; the control group was experimented with eighteen titanium implants which had anodized surface and the experimental group was experimented with eighteen sandblasted zirconia (Y-TZP) implants. At the tibias of six pigs, implants were installed into bone defect sites prepared surgically and treated with resorbable membranes and bovine bone. Two pigs were sacrificed after 1, 4 and 12 weeks respectively. Each implant site was sampled and processed for histologic and histomorphometric analysis. The stability of implants was evaluated with a $Periotest^{(R)}$. And the interfaces between bone and the implant were observed with a scanning electron microscope. Results: In stability analysis there was no significant difference between Periotest values of the control group and the experimental group. In histologic analysis with a light microscope after 4 weeks, there was new bone formation with the resorption of bovine bone and the active synthesis of osteoblasts in both groups. In bone-implant contact percentage there was significant difference between both groups (P<.05). In bone area percentage there was no significant difference between both groups. In analysis of both groups with a scanning electron microscope there was a gap between bone and a surface at 4 weeks and it was filled up with bone formed newly at 12 weeks. Conclusion: When accompanied by xenograft using membrane, bone to implant contact percentage of zirconia implants used in this experiment was significantly less than that of the titanium implants by surface treatment of anodic oxidation. So, it is considered that the improvement of zirconia implant is needed through ongoing research on surface treatment methods for its practical use.

The effect of different crystallization temperature of the hydroxyapatite coating produced by ion beam-assisted deposition on anodizing-treated titanium disks on human osteosarcoma cells (양극산화처리된 티타늄 표면에 이온빔보조증착방식을 이용한 수산화인회석 코팅시 소결온도의 차이가 조골세포에 미치는 영향)

  • Pae, Ah-Ran;Won, Hyun-Du;Lee, Richard Sung-Bok;Kim, Hyeong-Seob;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • Purpose: The aim of this study was to study the effect of hydroxyapatite (HA) coating crystallinity on the proliferation and differentiation of human osteosarcoma cells. Materials and methods: Surface roughness of the titanium disks increased by anodizing treatment and then HA was coated using ion beam-assisted deposition (IBAD). HA coating was crystallized by heat-treated at different temperature ($100^{\circ}C$, $300^{\circ}C$, $500^{\circ}C$, $800^{\circ}C$). According to the temperature, disks were divided into four groups (HA100, HA300, HA500, HA800). With the temperature, crystallinity of the HA coating was different. Anodized disks were used as control group. The physical properties of the disk surface were evaluated by surface roughness tests, XRD tests and SEM. The effect of the crystallinity of HA coating on HOS cells was studied in proliferation and differentiation. HOS cells were cultured on the disks and evaluated after 1, 3, 5, and 7 days. Growth and differentiation kinetics were subsequently investigated by evaluating cell proliferation and alkaline phosphatase activity. Results: Regardless of the heat-treated temperature, there is no difference on the surface roughness. Crystallinity of the HA was appeared in the groups of HA500, HA800. HOS cells proliferation, ALP activity were higher in HA500 and HA800 group than HA100 and HA300. Conclusion: Within the results of this limited study, heat treatment at $500^{\circ}C$ of HA coating produced by IBAD has shown greater effect on proliferation and differentiation of HOS cells. It is considered that further in vivo study will be necessary.