• 제목/요약/키워드: Anodic oxide

검색결과 434건 처리시간 0.029초

양극산화와 열수처리한 순수 니오비움 금속의 생체활성 평가 (Evaluation of Biocompatibility of Anodized and Hydrothermally Treated Pure Niobium Metal)

  • 원대희;최운재;이민호;배태성
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.79-88
    • /
    • 2005
  • This study was performed to investigate the surface properties of electrochemically oxidized pure niobium by anodic oxide and hydrothermal treatment technique. Niobium specimens of $10\times10mm$ in dimension were polished sequentially from #600, #800, #1000 emery paper. The surface pure niobium specimens were anodized in an electrolytic solution that was dissolved calcium and phosphate in water. The electrolytic voltage was set in the range of 250 V and the current density was 10 $mA/cm^2$. The specimen was hydrothermal treated in high-pressure steam at 300$^{\circ}C$ for 2 hours using an autoclave. Then, specimens were immersed in the Hanks' solution with pH 7.4 at 37$^{\circ}C$ for 30 days. The surface of specimen was characterized by scanning electron microscope(SEM), energy dispersive X-ray microanalysis(EDX), potentiostat/galvanostat test, and cytotoxicity test. The results obtained was summarized as follows; According to the result of measuring corrosion behavior at 0.9% NaCl, corrosion resistance was improved more specimens treated with anodic oxide than in hydrothermal treated ones. The multi-porous oxide layer on surface treated through anodic oxidation showed a structure that fine pores overlap one another, and the early precipitation of apatite was observed on the surface of hydrothermal treated samples. According to the result of EDX after 30 days deposition in Hanks' solution, Ca/P was 1.69 in hydrothermal treated specimens. In MTT test, specimens treated through anodic oxidation and hydrothermal treated ones showed spectrophotometer similar to that of the control group. Thus no significant difference in cytotoxicity was observed (P>0.05).

  • PDF

양극산화를 통한 다공성 니오븀 산화물 성장의 계면활성제 영향 (Effects of Surfactants on the Growth of Anodic Nanoporous Niobium Oxide)

  • 유정은;최진섭
    • 전기화학회지
    • /
    • 제13권3호
    • /
    • pp.163-168
    • /
    • 2010
  • 본 연구에서는 양극 산화를 통해 얻어지는 다공성 니오븀 산화물 제조에 양이온 계면활성제인 Cetyl Trimethyl Ammonium Bromide (CTAB)와 음이온 계면활성제인 Sodium Dodecyl Sulfate (SDS)의 영향을 비교 관찰하였다. SDS가 전해질에 첨가되어 제조된 다공성 니오븀 산화 막은 표면에 장시간 용출이 발생하지 않았고, 계면활성제가 첨가되지 않고 제조된 다공성 니오븀 산화막의 두께와 비교 하였을 때 두께가 두 배 이상 증가된 값을 얻을 수 있었다. 하지만 CTAB가 전해질에 첨가되어 제조된 다공성 니오븀 산화물의 표면에는 용출이 일어났다. 이러한 차이점을 양성으로 대전된 니오븀산화물과 음이온/또는 양이온 계면활성제 사이의 상호작용에 근거하여 설명하였다.

천이금속 첨가에 따른 이산화망간의 전기전도도 변화 (Electrical Conductivity Change of Manganese oxide with Addition of Transition Metal)

  • 김봉서;이동윤;이희웅;정원섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2028-2030
    • /
    • 2005
  • The electrical conductivity of manganese oxide and complex manganese oxide produced by anodic deposition method was measured. The additive transition metal is Cu, Co and Fe. The transition metals like as Cu, Co and Fe improved electrical conductivity of complex manganese oxide compared with manganese oxide. This is coincide with the results of molecular orbital calculation by DV-Xa.

  • PDF

AAO를 이용한 나노 패턴 마스터 제작에 관한 연구 (Study on Fabrication of Highly Ordered Nano Patterned Master by Using Anodic Aluminum Oxidation)

  • 신홍규;권종태;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.368-370
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. The resulting good filled uniform nano molded structure through hot embossing molding process shows the validity of the fabricated nano pattern masters.

  • PDF

전기화학적 방법에 의한 TiO2 피막의 생성기구 (Formation Mechanisms of TiO2 Layer by Electrochemical Method)

  • 오한준;이종호;장재명;지충수
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.482-487
    • /
    • 2002
  • A $TiO_2$ film for photocatalyst was prepared by anodic oxidation at 180V in acidic electrolyte and film formation mechanism was studied. The major part of anodic $TiO_2$ film consisted of anatase type structure and surface morphology exhibited a porous cell structure. The thickness growth rate of the oxide film with anodization time revealed two-stage slope corresponds to the surface morphology between anodic films. The growth of pores on cell structure and the growth rate of film with two-stage slope are related to the constant formation rate of the $TiO_2$ layer.

양극산화에 의한 티타늄 산화피막의 전기화학적 거동과 형상 (Electrochemical Behavior and Morphology of Anodic Titanium Oxide Films)

  • 변기정;김진수;;김교한
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권3호
    • /
    • pp.273-277
    • /
    • 2000
  • 순 티타늄(공업용 순 티타늄, 2급)의 0.5M에서 0.7M 농도의 $H_3PO_4$ 용액에서 $0.3\~l.0 A/dm^2$의 정전류 밀도변화에 따른 anodizing 거동을 관찰하였다. 이때 형성된 산화피막을 SEM과 XRD로 관찰, 분석하였다. 실험결과 0.05M $H_3PO_4$ 용액의 조건에서 전압-시간 (V-T)곡선의 초기에는 직선적인 관계를 보였고, 전류밀도가 증가함에 따라 포물선의 형태를 나타내었다. 그리고 V-T곡선의 형태는 전해질의 농도의 증가에 따라 큰 변화가 없었지만, 최종적인 전압은 감소하였다. 티타늄의 산화피막은 전해질 농도와 전류밀도가 증가할수록 미세한 입자 형태에서 눈꽃과 같고 층을 이룬 입자들로 구성된 구조를 나타내었다. 산화막과 전해질의 계면에서의 방전에 의해 산화피막의 국소적인 침착과 용해를 동반하였다. 산화피막의 결정성은 anodizing 전압이 증가할수록 증가하였고 전해질의 농도가 증가할수록 감소하는 경향을 보였다.

  • PDF

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.