• Title/Summary/Keyword: Anodic oxidation behavior

Search Result 41, Processing Time 0.026 seconds

Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels (초고강도 자동차용 강의 환원정전류인가에 따른 산화 거동 변화 연구)

  • Ha, Heon-Young;Kim, Hye-Jin;Moon, Joonoh;Lee, Tae-Ho;Jo, Hyo-Haeng;Lee, Chang-Geun;Yoo, Byung-Kil;Yang, Won-Seog
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.317-327
    • /
    • 2017
  • The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.

Effect of applied anodic current density on anodic oxidation behavior of AZ31 Mg alloy in OH-containing aqueous solution (수산화나트륨 수용액에서 AZ31 마그네슘 합금의 양극산하 거동에 미치는 인가 전류밀도의 영향)

  • Kim, Ye-Jin;Mun, Seong-Mo;Sin, Heon-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.98.2-98.2
    • /
    • 2017
  • 본 연구에서는 다양한 농도의 수산화나트륨 수용액에서 AZ31 마그네슘 합금의 양극산화 거동에 미치는 인가 전류밀도의 영향에 대해 알아보았다. 다양한 크기의 DC 전류를 인가하여 양극산화 거동을 확인하였으며, 형성된 피막의 표면구조를 optical microscope, confocal scanning laser microscope 등을 이용하여 관찰하였다. 연구결과, 인가 전류밀도에 따라 세 가지 유형의 voltage-time curve를 얻을 수 있었으며, voltage-time curve의 유형에 따라 서로 다른 피막 색상과 표면구조를 형성함을 발견하였다. 수산화나트륨 전해액에서 AZ31 마그네슘 합금의 플라즈마 전해산화 피막은 0.6 M 이상의 농도를 가진 수산화나트륨 용액에서 임계값 이상의 전류밀도를 인가하였을 경우에만 형성됨을 확인하였다.

  • PDF

Oxidation and Neutral Electrolytic Pickling Behavior of 304 and 430 Stainless Steels (304 및 430 스테인레스 강판의 산화 및 중성염 전해산세 거동)

  • Kim T. S.;Park Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.285-293
    • /
    • 2004
  • Oxidation behavior of 304 and 430 stainless steel were studied using thin film X-ray analysis and glow discharge spectrum analysis (here-after GDS). The oxidation layer of 304 stainless steel was composed of $Cr_2O_3\;and\;FeCrO_4$ and its thickness was about $1.5{\mu}m$ after $1\~5$ minutes of annealing at $1120^{\circ}C$ open air. However, the oxidation layer of 430 stainless steels was mainly composed of $Cr_2O_3$ and its typical thickness was 0.5um after $1\~5$ minutes of annealing at $1000^{\circ}C$ open air. Electro-chemical analysis revealed that the descaling of oxidation layer could be activated by Fe, Cr dissolution from the matrix behind the oxidation layer at the current density of $5\~10ASD$ and by Fe, Cr-oxide dissolution from the oxidation layer at the current density over than 10ASD. Electrolytic stripping of 430 and 304 revealed the intial incubation period of descaling by oxygen evolving at low current density range such as $5\~10ASD$. However the dissolution of oxide layer was occurred when applying the anodic current of $10\~20ASD$ on 430 and 304 stainless steels. It was suggested that the electrolytic pickling of high Cr bearing stainless steel such as 430 and 304 seemed to be the more effective in the high current density range such as $10\~20ASD$ than the low current density range such as $5\~10ASD$.

  • PDF

Lateral growth of PEO films on Al7050 alloy in 0.1 M NaAlO2

  • Moon, Sungmo;Kim, Gi Yeob
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.200-208
    • /
    • 2021
  • This paper investigated generation behavior of micro-arcs and growth behavior of PEO films on the AA7050 disc specimen in 0.1 M NaAlO2 solution under the application of 1200 Hz anodic pulse current. Morphologies, thickness and surface roughness of PEO films were examined at the edge part and central part separately. Micro-arcs were generated first at the edge part and then moved towards the central part with PEO treatment time, indicating lateral growth of PEO films. The lateral growth resulted in uniform PEO thickness of about 5 ㎛ and surface roughness of about 0.5 ㎛. Moving of the arcs from the edge towards the central part appeared only one time and large size arcs were generated at the edge before completing the central part with small size micro-arcs. This suggests that vertical growth starts before completing the lateral growth. Large size arcs generated at the edge resulted in the formation of relatively large size pores within the PEO films on the AA7050 disc specimen.

Anodizing Behavior and Silicides Control in Al-Si Alloy System (Al-Si 합금의 양극산화거동 및 규소화합물 제어)

  • Park, Jong Moon;Kim, Ju Seok;Kim, Jae Kwon;Kim, Su Rim;Park, No Jin;Oh, Myung Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • The anodic oxidation behavior of Si-containing aluminum alloy for diecasting was investigated. Especially, the property changes during anodization both on aluminum 1050 and 9 weight percentage silicon containing aluminum (Al-9Si) alloys were analyzed by the static current test. In order to fabricate a uniform anodic oxidation film by effect of Al-Si compound, nitric acid containing hydrofluoric acid had been used as a desmutter for aluminum alloy after alkaline etching. It was found that the level of voltage of Al-9Si alloy during the static current test was almost as double as higher than aluminum 1050 through anodization. By adding hydrofluoric acid in the nitric acid electrolyte, the silicon compound on the surface was removed, and the optimum amount of added hydrofluoric acid could be derived. It was also observed that the size of silicon compound formed on the surface could be refined by heat treatment at $500^{\circ}C$ and followed water quenching.

Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution Characterized by Rotating Cylinder Electrode

  • Kim, Jun-Hwan;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.595-604
    • /
    • 2000
  • Flow-Accelerated Corrosion Behavior of SA106 Gr.C steel in room temperature alkaline solution simulating the CANDU primary water condition was studied using Rotating Cylinder Electrode. Systems of RCE were set up and electrochemical parameters were applied at various rotating speeds. Corrosion current density decreased up to pH 10.4 then it increased rapidly at higher pH. This is due to the increasing tendency of cathodic and anodic exchange half-cell current. Corrosion potential shifted slightly upward with rotating velocity. Passive film was formed from pH 9.8 by the mechanism of step oxidation and the subsequent precipitation of ferrous species into hydroxyl compound. Above pH 10.4, the film formation process was active and the film became stable. Corrosion current density showed increment in pH 6.98 with the rotating velocity, while it soon saturated from 1000 rpm above pH 9.8. This seems that activation process which represents formation of passive film on the bare metal surface controls the entire corrosion process

  • PDF

Effect of Substrate on Electroless Co-Base Deposited Films (무전해 코발트계 석출막에 미치는 기판의 영향)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.319-324
    • /
    • 2009
  • The deposition behavior and structural and magnetic properties of electroless Co-B and Co-Fe-B deposits, as well as the amorphous ribbon substrates, were investigated. These Co-based alloy deposits exhibited characteristic polycrystalline structures and surface morphology and magnetic properties that were dependent on the type of amorphous substrates. The catalytic activity sequence of the amorphous ribbon electrodes for anodic oxidation of DMAB was estimated from the current density-potential curve in the anodic partial electrolytic bath that did not contain the metal ions. Both the deposition rate and potential in the initial region were obtained in order of the catalytic activity, depending on the alloy compositions of the substrates. The deposition rate linearly varied against the deposition time. The initial deposition potential may have also determined the structural and magnetic properties of the deposit based on the thickness of ${\mu}m$ order. Furthermore, a basic study of the electroless deposition processes on an amorphous ribbon substrate has been carried out in connection with the structural and magnetic properties of the deposits.

BIOLOGICAL RESPONSES OF OSTEOBLAST-LIKE CELLS TO DIFFERENT TITANIUM SURFACE BY ANODIZING MODIFICATION

  • Kim Myung-Joo;Kim Chang-Whe;Lim Young-Jun;Park Hyun-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.751-763
    • /
    • 2005
  • Statement of problem. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. The surface quality of the implant depends on the chemical, physical, mechanical and topographical properties of the surface. The different properties will interact with each other and a change in thickness of the oxide layer may also result in a change in surface energy, the surface topography and surface, chemical composition. However, there is limited the comprehensive study with regard to changed surface and biologic behavior of osteoblast by anodization. Purpose of study. The aim of this study was to analyze the characteristics of an oxide layer formed and to evaluate the cellular biologic behaviors on titanium by anodic oxidation (anodization) by cellular proliferation, differentiation, ECM formation and gene expression. And the phospholipase activity was measured on the anodized surface as preliminary study to understand how surface properties of Ti implant are transduced into downstream cellular events. Methods and Materials. The surface of a commercially pure titanium(Grade 2) was modified by anodic oxidation. The group 1 samples had a machined surface and other three experimental specimens were anodized under a constant voltage of 270 V(Group 2), 350 V(Group 3), and 450 V(Group 4). The specimen characteristics were inspected using the following five categories; the surface morphology, the surface roughness, the thickness of oxide layer, the crystallinity, and the chemical composition of the oxide layer. Cell numbers were taken as a marker for cell proliferation. While the expression of alkaline phosphatase and Runx2 (Cbfa1) was used as early differentiation marker for osteoblast. The type I collagen production was determined, which constitutes the main structural protein of the extracellular matrix. Phospholipase $A_2$ and D activity were detected. Results. (1) The anodized titanium had a porous oxide layer, and there was increase in both the size and number of pores with increasing anodizing voltage. (2) With increasing voltage, the surface roughness and thickness of the oxide film increased significantly (p<0.01), the $TiO_2$phase changed from anatase to rutile. During the anodic oxidization, Ca and P ions were more incorporated into the oxide layer. (3) The in vitro cell responses of the specimen were also dependant on the oxidation conditions. With increasing voltage, the ALP activity, type I collagen production, and Cbfa 1 gene expression increased significantly (p<0.01), while the cell proliferation decreased. (4) In preliminary study on the relation of surface property and phospholipase, PLD activity was increased but $PLA_2$ activity did not changed according to applied voltage. Conclusion. The anodized titanium shows improved surface characteristics than the machined titanium. The surface properties acquired by anodization appear to give rise more mature osteoblast characteristics and might result in increased bone growth, and contribute to the achievement of a tight fixation. The precise mechanism of surface property signaling is not known, may be related to phospholipase D.

Hydrogenation and Electrochemical Characteristics of Amorphous-nanostructured Mg-based Alloys

  • Gebert, A.;Khorkounov, B.;Schultz, L.
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.327-335
    • /
    • 2006
  • In the development of new hydrogen absorbing materials for a next generation of metal hydride electrodes for rechargeable batteries, metastable Mg-Ni-based compounds find currently special attention. Amor phous-nanocrystalline $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ alloys were produced by mechanical alloying and melt-spinning and characterized by means of XRD, TEM and DSC. On basis of mechanically alloyed Mg-Ni-Y powders, complex hydride electrodes were fabricated and their electrochemical behaviour in 6M KOH (pH=14,8) was investigated. The electrodes made from $Mg_{63}Ni_{30}Y_7$ powders, which were prepared under use of a SPEX shaker mill, with a major fraction of nanocrystalline phase reveal a higher electrochemical activity far hydrogen reduction and a higher maximum discharge capacity (247 mAh/g) than the electrodes from alloy powder with predominantly amorphous microstructure (216 mAh/g) obtained when using a Retsch planetary ball mill at low temperatures. Those discharge capacities are higher that those fur nanocrystalline $Mg_2Ni$ electrodes. However, the cyclic stability of those alloy powder electrodes was low. Therefore, fundamental stability studies were performed on $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ ribbon samples in the as-quenched state and after cathodic hydrogen charging by means of anodic and cathodic polarisation measurements. Gradual oxidation and dissolution of nickel governs the anodic behaviour before a passive state is attained. A stabilizing effect of higher fractions of yttrium in the alloy on the passivation was detected. During the cathodic hydrogen charging process the alloys exhibit a change in the surface state chemistry, i.e. an enrichment of nickel-species, causing preferential oxidation and dissolution during subsequent anodization. The effect of chemical pre-treatments in 1% HF and in $10\;mg/l\;YCl_3/1%\;H_2O_2$ solution on the surface degradation processes was investigated. A HF treatment can improve their anodic passivation behavior by inhibiting a preferential nickel oxidation-dissolution at low polarisation, whereas a $YCl_3/H_2O_2$ treatment has the opposite effect. Both pre-treatment methods lead to an enhancement of cathodically induced surface degradation processes.

Effect of Na3PO4 Concentration on the Formation Behavior and Properties of PEO Films on AA2024 (알루미늄 2024 합금의 플라즈마 전해산화 피막의 형성 거동 및 피막 물성에 미치는 인산나트륨 농도의 영향)

  • Kim, Juseok;Shin, Heon-cheol;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.351-359
    • /
    • 2020
  • Formation behavior and properties of PEO (Plasma Electrolytic Oxidation) film on AA2024 were investigated under application of pulsed current as a function of Na3PO4 concentration in 0.05 M Na2SiO3 solution by analyzing voltage-time behavior, in-situ observation of arc generation, observation of surface morphology and measurements of thickness and surface roughness. Arc generation voltage decreased with increasing Na3PO4 concentration. Color difference of PEO films between edge and inner part disappeared by addition of Na3PO4. It was also observed that size of nodules on PEO film decreased with increasing Na3PO4 concentration. Thickness of PEO films formed on AA2024 increased with increasing Na3PO4 concentration. Whereas, surface roughness of PEO films decreased with increasing Na3PO4 concentration up to 0.05 M of Na3PO4 which is attributed to the deceased size of nodules on the PEO films. However, the surface roughness increased with increasing Na3PO4 concentration more than 0.07 M of Na3PO4 which seems to be due to the formation of non-uniform PEO films with smooth surface and large size pores formed by orange-colored big arcs. The experimental results suggest that added sodium phosphate less than 0.2 M in an alkaline silicate solution can contribute to the formation of relatively thick and uniform thickness of PEO films under arc generation voltage lower than 300 V.