• 제목/요약/키워드: Anodic oxidation(anodization)

검색결과 39건 처리시간 0.03초

AAO 나노기공을 나노 임프린트 리소그래피의 형틀로 이용한 PMMA 나노패턴 형성 기술 (Fabrication of Nanometer-sized Pattern on PMMA Plate Using AAO Membrane As a Template for Nano Imprint Lithography)

  • 이병욱;홍진수;김창교
    • 제어로봇시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.420-425
    • /
    • 2008
  • PMMA light guiding plate with nano-sized pattern was fabricated using anodized aluminum oxide membrane as a template for nano imprint lithography. Nano-sized pore arrays were prepared by the self-organization processes of the anodic oxidation using the aluminum plate with 99.999% purity. Since the aluminum plate has a rough surface, the aluminum plate with thickness of 1mm was anodized after the pre-treatments of chemical polishing, and electrochemical polishing. The surface morphology of the alumina obtained by the first anodization process was controlled by the concentration of electrochemical solution during the first anodization. The surface morphology of the alumina was also changed according to temperature of the solution during chemical polishing performed after first anodization. The pore widening process was employed for obtaining the one-channel with flat surface and height of the channel because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. It is shown from SPM results that the nano-sized pattern on PMMA light guiding plate fabricated by nano imprint lithography method was well transferred from that of anodized aluminum oxide template.

양극산화를 이용한 산화 타이타늄 나노 튜브 구조 형성 원리 (Principle of Anodic TiO2 Nanotube Formations)

  • 이기영
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.601-606
    • /
    • 2017
  • 금속 표면처리의 대표적인 기술인 양극산화를 통하여 일차원 나노구조 금속 산화물을 형성할 수 있다. 여러 가지 금속 산화물 중에 기능성이 뛰어난 $TiO_2$에 대한 관심의 증대로 $TiO_2$ 나노 튜브를 이용한 연구가 많이 이루어지고 있다. 본 총설논문에서는 지금까지 연구되어 밝혀진 $TiO_2$ 나노 튜브가 형성원리에 대한 해설논문으로 전기화학적 측면에서의 양극 산화 공정에 대한 이해를 통하여 나노 튜브 형성을 위한 전기적 조건, 화학적 조건, 물리적 조건에 대하여 다루었다. 특히 $TiO_2$ 나노 튜브 성장의 핵심 요소인 산화물의 형성과 에칭의 평형관계, 다공성 구조의 형성 원인을 다루었다. 나아가 전해질 조건에 따른 $TiO_2$ 나노 튜브의 형태학적 고찰을 함으로써 향후 양극 산화를 통한 $TiO_2$ 나노 튜브 응용에 관한 연구를 하는 연구자에게 이해하기 쉽게 설명하고자 하였다.

황산 용액에서 Al6061 합금의 아노다이징 피막 형성거동 (Formation Behavior of Anodic Oxide Films on Al 6061 Alloy in Sulfuric Acid Solution)

  • 문성모;정기훈;임수근
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.393-399
    • /
    • 2018
  • Formation behavior of aluminum anodic oxide (AAO) films on Al6061 alloy was studied in view of thickness, morphology and defects in the anodic films in 20 vol.% sulfuric acid solution at a constant current density of $40mA/cm^2$, using voltage-time curve, observation of anodized specimen colors and surface and cross-sectional morphologies of anodic films with anodization time. With increasing anodizing time, voltage for film formation increased exponentially after about 12 min and its increasing rate decreased after 25 min, followed by a rapid decrease of the voltage after about 28 min. Surface color of anodized specimen became darker with increasing anodizing time up to about 20 min, while it appeared to be brighter with increasing anodizing time after 20 min. The darkened and brightened surfaces with anodizing time are attributed to an increase in thickness of porous anodic oxide film and a chemical damage of the films due to heat generated by increased resistance of the film, respectively. Cross-sectional observation of AAO films revealed the formation of defects of crack shape at the metal/oxide interface after 15 min which prevents the growth of AAO films. Width and length of the crack-like defect increased with anodizing time up to 25 min of anodizing, and finally the outer part of AAO films was partly dissolved or detached after 30 min of anodizing, resulting in non-uniform surface structures of the AAO films.

Highly Ordered TiO2 nanotubes on pattered Si substrate for sensor applications

  • Kim, Do-Hong;Shim, Young-Seok;Moon, Hi-Gyu;Yoon, Seok-Jin;Ju, Byeong-Kwon;Jang, Ho-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.66-66
    • /
    • 2011
  • Anodic titanium dioxide (TiO2) nanotubes are very attractive materials for gas sensors due to its large surface to volume ratios. The most widely known method for fabrication of TiO2 nanotubes is anodic oxidation of metallic Ti foil. Since the remaining Ti substrate is a metallic conductor, TiO2 nanotube arrays on Ti are not appropriate for gas sensor applications. Detachment of the TiO2 nanotube arrays from the Ti Substrate or the formation of electrodes onto the TiO2 nanotube arrays have been used to demonstrate gas sensors based on TiO2 nanotubes. But the sensitivity was much lower than those of TiO2 gas sensors based on conventional TiO2 nanoparticle films. In this study, Ti thin films were deposited onto a SiO2/Si substrate by electron beam evaporation. Samples were anodized in ethylene glycol solution and ammonium fluoride (NH4F) with 0.1wt%, 0.2wt%, 0.3wt% and potentials ranging from 30 to 60V respectively. After anodization, the samples were annealed at $600^{\circ}C$ in air for 1 hours, leading to porous TiO2 films with TiO2 nanotubes. With changing temperature and CO concentration, gas sensor performance of the TiO2 nanotube gas sensors were measured, demonstrating the potential advantages of the porous TiO2 films for gas sensor applications. The details on the fabrication and gas sensing performance of TiO2 nanotube sensors will be presented.

  • PDF

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • 제15권3호
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

양극산화에 의한 티타늄 산화막의 표면 특성 및 생체 활성에 관한 연구 (SURFACE CHARACTERISTICS AND BIOACTIVITY OF ANODICALLY OXIDIZED TITANIUM SURFACES)

  • 이상한;조인호
    • 대한치과보철학회지
    • /
    • 제45권1호
    • /
    • pp.85-97
    • /
    • 2007
  • Statement of problem: Recently, anodic oxidation of cp-titanium is a popular method for treatment of titanium implant surfaces. It is a relatively easy process, and the thickness, structure, composition, and the microstructure of the oxide layer can be variably modified. Moreover the biological properties of the oxide layer can be controlled. Purpose: In this study, the roughness, microstructure, crystal structure of the variously treated groups (current, voltage, frequency, electrolyte, thermal treatment) were evaluated. And the specimens were soaked in simulated body fluid (SBF) to evaluate the effects of the surface characteristics and the oxide layers on the bioactivity of the specimens which were directly related to bone formation and integration. Materials and methods: Surface treatments consisted of either anodization or anodization followed thermal treatment. Specimens were divided into seven groups, depending on their anodizing treatment conditions: constant current mode (350V for group 2), constant voltage mode (155V for group 3), 60 Hz pulse series (230V for group 4, 300V for group 5), and 1000 Hz pulse series (400V for group 6, 460V for group 7). Non-treated native surfaces were used as controls (group 1). In addition, for the purpose of evaluating the effects of thermal treatment, each group was heat treated by elevating the temperature by $5^{\circ}C$ per minute until $600^{\circ}C$ for 1 hour, and then bench cured. Using scanning electron microscope (SEM), porous oxide layers were observed on treated surfaces. The crystal structures and phases of titania were identified by thin-film x-ray diffractmeter (TF-XRD). Atomic force microscope (AFM) was used for roughness measurement (Sa, Sq). To evaluate bioactivity of modified titanium surfaces, each group was soaked in SBF for 168 hours (1 week), and then changed surface characteristics were analyzed by SEM and TF-XRD. Results: On basis of our findings, we concluded the following results. 1. Most groups showed morphologically porous structures. Except group 2, all groups showed fine to coarse convex structures, and the groups with superior quantity of oxide products showed superior morphology. 2. As a result of combined anodization and thermal treatment, there were no effects on composition of crystalline structure. But, heat treatment influenced the quantity of formation of the oxide products (rutile / anatase). 3. Roughness decreased in the order of groups 7,5,2,3,6,4,1 and there was statistical difference between group 7 and the others (p<0.05), but group 7 did not show any bioactivity within a week. 4. In groups that implanted ions (Ca/P) on the oxide layer through current and voltage control, showed superior morphology, and oxide products, but did not express any bioactivity within a week. 5. In group 3, the oxide layer was uniformly organized with rutile, with almost no titanium peak. And there were abnormally more [101] orientations of rutile crystalline structure, and bonelike apatite formation could be seen around these crystalline structures. Conclusion: As a result of control of various factors in anodization (current, voltage, frequency, electrolytes, thermal treatment), the surface morphology, micro-porosity, the 2nd phase formation, crystalline structure, thickness of the oxide layer could be modified. And even more, the bioactivity of the specimens in vitro could be induced. Thus anodic oxidation can be considered as an excellent surface treatment method that will able to not only control the physical properties but enhance the biological characteristics of the oxide layer. Furthermore, it is recommended in near future animal research to prove these results.

정전위 양극 산화에 의한 나노다공성 금 구조의 초미세 전극 제작 (Fabrication of Ultramicroelectrodes with Nanoporous Gold Structures by Potentiostatic Anodization)

  • 신서인;이시연;김종원
    • 대한화학회지
    • /
    • 제66권6호
    • /
    • pp.436-441
    • /
    • 2022
  • 나노 다공성 구조를 가지는 전극은 매우 큰 전기화학적 표면적을 지니기 때문에 그 형성 방법에 대한 연구가 다양하게 이루어져 왔다. 본 논문에서는 정전위 양극 산화를 이용하여 초미세전극(ultramicroelectrode, UME) 표면에 나노 다공성 금(nanoporous gold, NPG) 구조를 도입하는 방법을 연구하였다. 1M KCl을 포함하는 0.1M 인산완충용액(pH 8)에서 1.3 V의 정전위를 가해 주면 잘 정의된 NPG 구조가 UME 표면에 도입되었다. NPG-UME 형성에서 인가 전위와 반응 시간, 그리고 전극의 크기가 형성된 NPG 전극의 거칠기 인자(roughness factor, Rf)에 미치는 영향을 관찰하여 양극 산화 효율을 조사하였다. 10분 정도의 짧은 시간에 2000정도의 큰 Rf 값을 가지는 NPG-UME를 만들 수 있었는데, 전기화학적 글루코오스 검출에 효과적으로 활용 가능하였다. 본 연구 결과는 적은 시료양으로 전기화학적 분석을 수행하는 경우 응용성이 클 것으로 기대한다.

Surface Characteristics of Hydroxyapatite Coated Surface on Nano/Micro Pore Structured Ti-35Ta-xNb Alloys

  • Jo, Chae-Ik;Choe, Han-Choel
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.185-185
    • /
    • 2014
  • In this study, we investigated surface characteristics of hydroxyapatite coated surface on nano/micro pore structured Ti-35Ta-xNb alloys. This paper was focus on morphology and corrosion resistance of Anodic oxidation. To prepare the samples, Ti-35Ta-xNb (x= 0, 10 wt. %) alloys were manufactured by arc melting and heat-treated for 12 h at $1050^{\circ}C$ in Ar atmosphere at $0^{\circ}C$ water quenching. Micro-pore structured surface was performed using anodization with a DC power supply at 280 V for 3 min, nanotube formed on Ti-35Ta-xNb alloys was performed using DC power supply at 30 V in 60 min at room temperature. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction.

  • PDF

Hydrogenation and Electrochemical Characteristics of Amorphous-nanostructured Mg-based Alloys

  • Gebert, A.;Khorkounov, B.;Schultz, L.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.327-335
    • /
    • 2006
  • In the development of new hydrogen absorbing materials for a next generation of metal hydride electrodes for rechargeable batteries, metastable Mg-Ni-based compounds find currently special attention. Amor phous-nanocrystalline $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ alloys were produced by mechanical alloying and melt-spinning and characterized by means of XRD, TEM and DSC. On basis of mechanically alloyed Mg-Ni-Y powders, complex hydride electrodes were fabricated and their electrochemical behaviour in 6M KOH (pH=14,8) was investigated. The electrodes made from $Mg_{63}Ni_{30}Y_7$ powders, which were prepared under use of a SPEX shaker mill, with a major fraction of nanocrystalline phase reveal a higher electrochemical activity far hydrogen reduction and a higher maximum discharge capacity (247 mAh/g) than the electrodes from alloy powder with predominantly amorphous microstructure (216 mAh/g) obtained when using a Retsch planetary ball mill at low temperatures. Those discharge capacities are higher that those fur nanocrystalline $Mg_2Ni$ electrodes. However, the cyclic stability of those alloy powder electrodes was low. Therefore, fundamental stability studies were performed on $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ ribbon samples in the as-quenched state and after cathodic hydrogen charging by means of anodic and cathodic polarisation measurements. Gradual oxidation and dissolution of nickel governs the anodic behaviour before a passive state is attained. A stabilizing effect of higher fractions of yttrium in the alloy on the passivation was detected. During the cathodic hydrogen charging process the alloys exhibit a change in the surface state chemistry, i.e. an enrichment of nickel-species, causing preferential oxidation and dissolution during subsequent anodization. The effect of chemical pre-treatments in 1% HF and in $10\;mg/l\;YCl_3/1%\;H_2O_2$ solution on the surface degradation processes was investigated. A HF treatment can improve their anodic passivation behavior by inhibiting a preferential nickel oxidation-dissolution at low polarisation, whereas a $YCl_3/H_2O_2$ treatment has the opposite effect. Both pre-treatment methods lead to an enhancement of cathodically induced surface degradation processes.