• Title/Summary/Keyword: Anode-supported SOFC

Search Result 94, Processing Time 0.031 seconds

Fabrication of Solid Oxide Fuel Cells via Physical Vapor Deposition with Electron Beam: II. Unit Cell Performance (전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조: II. 단전지 성능)

  • Kim, Hyoung-Chul;Park, Jong-Ku;Jung, Hwa-Young;Son, Ji-Won;Kim, Joo-Sun;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.299-303
    • /
    • 2006
  • In this paper, anode supported SOFC with columnar structured YSZ electrolyte was fabricated via Electron Beam Physical Vapor Deposition (EBPVD) method. Liquid condensation process was employed for the preparation of NiO-YSZ substrate and the high power electron beam deposition method was used for the deposition of YSZ electrolyte film. Double layered cathode with LSM-YSZ and LSM was printed on electrolyte via screen-printing method and fired at $1150^{\circ}C$ in air atmosphere for 3 h. The electrochemical performance and the long-term stability of $5{\times}5cm^2$ single cell were investigated with DC current-voltage characteristics and AC-impedance spectroscopy. According to the investigation, $5{\times}5cm^2$ sized unit cell showed the maximum power density of around $0.76W/cm^2$ at $800^{\circ}C$ and maintained the stable performance over 400 h.

Effect of Cathode Porosity of Mixed Conducting (La0.6Sr0.4Co0.2Fe0.8O3) on the Power Generating Characteristics of Anode Supported SOFCs (혼합전도체 LSCF(La0.6Sr0.4Co0.2Fe0.8O3) 양극의 기공률에 따른 음극지지형 단전지의 출력특성 평가)

  • Yun, Joong-Cheul;Kim, Woo-Sik;Kim, Hyoungchul;Lee, Jong-Ho;Kim, Joosun;Lee, Hae-Weon;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.269-275
    • /
    • 2005
  • We analyzed the unit cell performance against the cathode porosity, which is supposed to be closely related with active sites for the cathode reaction. In order to fabricate the unit cells with different porosity in the cathode layer we changed the mixing ratio of fine and coarse LSCF cathode powders. The final porosity of each cathode layer was 14, 23, 27, $39\%$ respectively. According to the electrochemical analysis of unit cell performance via DC current interruption and AC impedance method, the electrodic polarization resistance was diminished as the cathode porosity increased. The decrease of polarization resistance was attributed due to the increase of active reaction sites and the enhancement of overall unit cell performance could be explained in the same line.

Synthesis and Characterization of La0.75Sr0.25FeO3 Used as Cathode Materials for Solid Oxide Fuel Cell by GNP Method (GNP법을 이용한 고체산화물 연료전지의 공기극용 La0.75Sr0.25FeO3의 제조 및 특성)

  • Park, Ju-Hyun;Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Yun, Ki-Seok;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • We synthesized and investigated $La_{0.75}Sr_{0.25}FeO_3$ by Glycine Nitrate Process(GNP) method used as cathode materials for SOFC(solid oxide fuel cell). Optimized amount of glycine is 3.17 mol. ICP elemental composition analysis indicated that the stoichiometry of the synthesized powders have nearly nominal values. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The sample powders were isostatically pressed to form a pellet. The green body was sintered at $1200^{\circ}C$ and the relative density of the sintered specimens were measured by Archimedes mettled. We measured electrochemical performance of LSF by AC impedance spectroscopy. Resistance of LSF shows lower value than that of LSM throughout all temperature region. The anode-supported solid oxide fuel cell showed a performance of $342mW/cm^2(0.7V,\;488mA/cm^2)$ at $750^{\circ}C$. The electrochemical characteristics of the single cell were examined by at impedance method.

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.