• Title/Summary/Keyword: Anode-Supported

Search Result 152, Processing Time 0.02 seconds

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

Study on safety performance evaluation of stationary SOFC stack (건물용 고체산화물연료전지 스택 안전성능평가 연구)

  • Park, Tae Seong;Lee, Eun Kyung;Lee, Seung Kuk
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.1-12
    • /
    • 2018
  • The code and standards related to fuel cells were analyzed to derive the SOFC(Solid Oxide Fuel Cell) stack safety performance evaluation items and evaluation methode. Safety performance evluation of the SOFC stack was tested by quoting derived test items. The stack used in the test is an anode-supported type 2 Cell stack (Active surface area : 220cm) manufactured by MICO Inc, and SOFC stack safety performance evaluation system used for the test is self-manufactured. We conducted a leakage test, current voltage characteristic test, rated output test, and power response characteristics test. In the safety performance evaluation test, the stack showed no gas leakage, the maximum output and rated output was recorded to 65.6 W(1.41 V, 46.5 A, $422mA/cm^2$), 62.3 W(1.57 V, 40 A, $363mA/cm^2$). In the power response characteristics test verified that the output is kept stable within two seconds. At the maximum load (40 A) and the minimum load (8 A), the output was recorded 62 W and 16W in $750^{\circ}C$. This study will contribute to the universalization and to provide much safe environment of operating the solid oxide fuel cell system.