• Title/Summary/Keyword: Anode voltage

Search Result 539, Processing Time 0.027 seconds

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

A Study on the Effect of Electrolyte Additives on Zn Electrode with Pb3O4 in Zn-AgO Secondary Battery System (Zn-AgO 이차 전지에서 Pb3O4가 첨가된 아연 전극에 미치는 전해질 첨가제의 영향에 관한 연구)

  • Park, Kyung-Wha;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2003
  • Zn electrode was widely used as an anode material in alkaline battery systems in highly concentrated KOH electrolyte, however it was well known that its cycle life is significantly shortened by growth of dendrite due to the high dissolution of $Zn(OH)_2$ and rapid electrochemical reaction. In this study when by the additives such as $Ca(OH)_2$, Citrate, tartrate and Gluconate were added to $40\%$ KOH electrolyte at solution temperature of $25^{\circ}C$ and the amount of $5wt\%\;Pb_3O_4$ was mixed to Zn electrode and then the effect of $Pb_3O_4$ and additives on the electrochemical behavior of Zn electrode was investigated by Potentiodynamic Polarization Curves, Cyclic Voltammetry, Accelerated Life Cycle lest, and SEM image analyses. The addition of $Pb_3O_4$ reduced the corrosion rate of Zn electrode. The corrosion potential of Zn electrode with $Pb_3O_4$ was higher or lower than that of pure Zn electrode however was not influenced practically to the open circuit voltage. And the addition of 4 type additives had an important role in improving both cycle life in accelerated cycle life test and corrosion resistance. Furthermore the additive of Tartrate indicated comparatively a good effect to corrosion resistance as well as charging-discharging property Improvement among those four type additives.

Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC) (알칼리금속 열전기변환장치의 접합과 출력성능)

  • Suh, Min-Soo;Lee, Wook-Hyun;Woo, Sang-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.665-671
    • /
    • 2017
  • The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

Study on safety performance evaluation of stationary SOFC stack (건물용 고체산화물연료전지 스택 안전성능평가 연구)

  • Park, Tae Seong;Lee, Eun Kyung;Lee, Seung Kuk
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.1-12
    • /
    • 2018
  • The code and standards related to fuel cells were analyzed to derive the SOFC(Solid Oxide Fuel Cell) stack safety performance evaluation items and evaluation methode. Safety performance evluation of the SOFC stack was tested by quoting derived test items. The stack used in the test is an anode-supported type 2 Cell stack (Active surface area : 220cm) manufactured by MICO Inc, and SOFC stack safety performance evaluation system used for the test is self-manufactured. We conducted a leakage test, current voltage characteristic test, rated output test, and power response characteristics test. In the safety performance evaluation test, the stack showed no gas leakage, the maximum output and rated output was recorded to 65.6 W(1.41 V, 46.5 A, $422mA/cm^2$), 62.3 W(1.57 V, 40 A, $363mA/cm^2$). In the power response characteristics test verified that the output is kept stable within two seconds. At the maximum load (40 A) and the minimum load (8 A), the output was recorded 62 W and 16W in $750^{\circ}C$. This study will contribute to the universalization and to provide much safe environment of operating the solid oxide fuel cell system.

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber (환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가)

  • Yu, Jae-Cheul;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.

Study on the channel of bipolar plate for PEM fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 유로 연구)

  • Ahn Bum Jong;Ko Jae-Churl;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.15-27
    • /
    • 2004
  • The purpose of this paper is to improve the performance of Polymer electrolyte fuel cell(PEMFC) by studying the channel dimension of bipolar plates using commercial CFD program 'Fluent'. Simulations are done ranging from 0.5 to 3.0mm for different size in order to find the channel size which shoves the highst hydrogen consumption. The results showed that the smaller channel width, land width, channel depth, the higher hydrogen consumption in anode. When channel width is increased, the pressure drop in channel is decreased because total channel length Is decreased, and when land width is increased, the net hydrogen consumption is decreased because hydrogen is diffused under the land width. It is also found that the influence of hydrogen consumption is larger at different channel width than it at different land width. The change of hydrogen consumption with different channel depth isn't as large as it with different channel width, but channel depth has to be small as can as it does because it has influence on the volume of bipolar plates. however the hydrogen utilization among the channel sizes more than 1.0mm which can be machined in reality is the most at channel width 1.0, land width 1.0, channel depth 0.5mm and considered as optimum channel size. The fuel cell combined with 2cm${\times}$2cm diagonal or serpentine type flow field and MEA(Membrane Electrode Assembly) is tested using 100W PEMFC test station to confirm that the channel size studied in simulation. The results showed that diagonal and serpentine flow field have similarly high OCV and current density of diagonal (low field is higher($2-40mA/m^2$) than that of serpentine flow field under 0.6 voltage, but the current density of serpentine type has higher performance($5-10mA/m^2$) than that of diagonal flow field under 0.7-0.8 voltage.

  • PDF

Removal of Heavy Metal Ions in the Aqueous Solution Using Anodic Alumina and Retriculate Vitreous Carbon Electrodes (Anodic Alumina와 Retriculate Vitreous Carbon을 전극으로 사용하여 수용액에서 중금속이온의 제거)

  • Cho, Seung-Koo;Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.120-129
    • /
    • 2003
  • The anodic alumina is synthesized using 0.3M oxalic acid and the barrier layers of the anodic alumina are removed using the 20wt% $H_2SO_4$ solution. The structure of the anodic alumina is analyzed by XRD and SEM. It is observed by SEM that the size of anodic alumina pore is about 60nm. And the uniformity of the anodic alumina surface under the 20wt% $H_2SO_4$ solution is poorer than the unifomity of the the normal anodic alumina surface. The anodic alumina and the carbon are used cathode and anode in$Cd(NO_3)_2{\cdot}4H_2O$, $Co(NO_3)_2{\cdot}6H_2O$ and $PbSO_4$ solutions. In this study, the constant D.C. electrical current is flowed in each solution for 24hours. It is found that the voltages so far as 4.6, 3.4 and 5.1V at $Cd(NO_3)_2{\cdot}4H_2O$, $Co(NO_3)_2{\cdot}6H_2O$ and $PbSO_4$ solutions increase with increasing the flowing current time and after the voltage does not change which values are 4.2, 2.7 and 2.4V, respectively. The amount of metal ions in solutions decrease with increasing the flowing current time until the flowing current time is 18hours and the metals are formed at the surface of anodic alumina. After the metal ions are removed using the anodic alumina, and $Cd^{2+}$, $Co^{2+}$ and $Pb^{2+}$ ions are removed again using flow cell with retriculate vitreous carbon(RVC) working electrode. The concentration of $Cd^{2+}$, and $Co^{2+}$ions decrease until the flowing time of the solutions is 20minutes and the concentration of $Pb^{2+}$ ion decreases until that time is 30minutes. In this case, the removal effects of $Cd^{2+}$, $Co^{2+}$ and $Pb^{2+}$ ions are 34.78, 28.79 and 86.38%, respectively. And it is possible that both $Cd^{2+}$ and $Co^{2+}$ions are adsorbed in pore of RVC at the same time and the removal effects of $Cd^{2+}$ and $Co^{2+}$ions are 32.30 and 31.37%.

  • PDF