• Title/Summary/Keyword: Anode Materials

Search Result 845, Processing Time 0.042 seconds

Fabrication and Characteristics of Supported Type Planar Solid Oxide Fuel Cell By Co-firing Process (공소결법에 의해 제조된 지지체식 평판형 고체산화물 연료전지 성능 특성)

  • Song, Rak-Hyun
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.160-168
    • /
    • 2003
  • The co-firing processes for the supported type planar solid oxide fuel cell were investigated. A flat cell of $7.7${\times}$10.8\textrm{cm}^2$ was fabricated successfully by the co-firing process, in which green films were co-sintered in the forms of two layers of anode/electrolyte or of three layers of anode/electrolyte/cathode with gas distributor. A co-fired cell of two layers yielded a power of 200 ㎽/$\textrm{cm}^2$ at 608 ㎷. Its performance loss was mainly due to iR drop in the anodic gas distributor, which was attributed to poor contact between anodic gas distributor and current collector. The performance in the co-fired cell of three layers was much lower than that of two layers, which resulted from the large iR drop and activation overvoltage at the cathodic side. In the co-fired cell of two layers, the impedance analysis indicated that the performance decay during cell operation is due to both anode overvoltage and iR drop at anode side. Also the electrode reaction of the co-fired two layers' cell is considered to be controlled by activation overvoltage within the low current of 50 ㎃.

Influences of Coating Cycles and Composition on the Properties of Dimensionally Stable Anode for Cathodic Protection

  • Yoo, Y.R.;Chang, H.Y.;Take, S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Properties of the anode for cathodic protection need low overvoltage for oxygen evolution and high corrosion resistance. It is well known that DSA (Dimensionally Stable Anode) has been the best anode ever since. DSA is mainly composed of $RuO_2$, $IrO_2$, $ZrO_2$, $Co_2O_3$, and also $Ta_2O_5$, $TiO_2$, $MnO_2$ are added to DSA for better corrosion resistance. The lifetime of DSA for cathodic protection is also one of the very important factors. $RuO_2$, $IrO_2$, $RhO_2$, $ZrO_2$ are well used for life extension, and many researches are focused on life extension by lowering oxygen evolution potential and minimizing dissolution of oxide coatings. This work aims to evaluate the influence of constituents of MMO and coating cycles and $ZrO_2$ coating on the electrochemical properties and lifetime of DSA electrodes. From the results of lifetime assessment in the anodes coated with single component, $RuO_2$ coating was more effective and showed longer lifetime than $IrO_2$ coating. Also, an increased coating cycle and an electrochemically coated $ZrO_2$ could enhance the lifetime of a DSA.

In-Situ Analysis of Overpotentials in Direct Methanol Fuel Cell by Using Membrane Electrode Assembly Composed of Three Electrodes (삼전극으로 구성된 막전극접합체를 이용한 직접메탄올 연료전지의 실시간 과전압 분석)

  • Jung, Namgee;Cho, Yoon-Hwan;Cho, Yong-Hun;Sung, Yung-Eun
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.330-336
    • /
    • 2018
  • In this study, a membrane electrode assembly(MEA) composed of three electrodes(anode, cathode, and reference electrode) is designed to investigate the effects of methanol concentration on the overpotentials of anode and cathode in direct methanol fuel cells(DMFCs). Using the three-electrode cell, in-situ analyses of the overpotentials are carried out during direct methanol fuel cell operation. It is demonstrated that the three-electrode cell can work effectively in transient state operating condition as well as in steady-state condition, and the anode and cathode exhibit different overpotential curves depending on the concentration of methanol used as fuel. Therefore, from the real-time separation of the anode and cathode overpotentials, it is possible to more clearly prove the methanol crossover effect, and it is expected that in-situ analysis using the three-electrode cell will provide an opportunity to obtain more diverse results in the area of fuel cell research.

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode

  • Kang, Hyeong-Ku;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.

Flexible Organic Light-Emitting Diodes Using Modified Graphene Anodes

  • Han, Tae-Hui;Lee, Yeong-Bin;Choe, Mi-Ri;U, Seong-Hun;Bae, Sang-Hun;Hong, Byeong-Hui;An, Jong-Hyeon;Lee, Tae-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.69.2-69.2
    • /
    • 2012
  • Graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date. However, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous power efficiencies (37.2 lm/W in fluorescent OLEDs, 102.7 lm/W in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm/W in fluorescent OLEDs, 85.6 lm/W in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  • PDF

A Study on the Cathodic Protection Design Optimization of Steel Piles for LNG Storage Tanks by Numerical Analysis (수치해석에 의한 LNG 저장탱크용 강관파일 전기방식 설계 최적화 연구)

  • Kim, Young Keun;Song, Hong Seok
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.294-297
    • /
    • 2017
  • For the longer service life of steel pile, cathodic protection is selected sometimes at corrosive environment. The cathodic protection design improvement was investigated in this study. The current demand for cathodic protection was calculated from the potentiostatic current monitoring of the steel specimen in the deaerated soil samples. In this study, the current distribution was studied using the Boundary Element Method (BEM) and the Finite Element Method (FEM) numerical analysis methods. The optimum layout of the anode was developed and confirmed by numerical analysis. Under the conventional design of the anode, the length of the anode hole is same as the pile length. We found that, at the bottom end of the pile, the current density is too high. When the anode hole length was 80% of the pile length, the current consumption at the end was reduced. The construction cost of anode hole drilling was decreased about 20%, as compared to the conventional design. Furthermore, the life of the anode materials could be extended by reducing the current consumption at the end section. Using this approach, the construction cost was reduced significantly without any under-protection area on the steel piles.