• Title/Summary/Keyword: Anode Material

Search Result 714, Processing Time 0.029 seconds

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Study on the Anode Electrode Reaction in the Metal-Air Cell (금속-공기전지의 Anode전극 반응에 관한 연구)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.1002-1006
    • /
    • 2010
  • In this study, magnesium (Mg), zinc (Zn) and aluminium (Al) as anode electrode and the solution of NaCl dissolved with 2~20 wt% as electrolytes were used for the metal-air cell. The open circuit voltage, short circuit current and I-V characteristics upon different kinds of anode electrode and electrolyte concentration were investigated. The open circuit voltage, initially about 1.45 V, rises to 1.6 V during the first 10 minutes indicating the necessity of an induction time to activate the catalyst on the air cathode. The short circuit current increases with an increased concentration of NaCl, causes an increase in the conductivity of the electrolyte solution, but the open circuit voltage did not under undergo influence of electrolyte. From NaCl 20 wt% electrolyte, the maximum output power of the magnesium electrode materials was measured with 177mW. It is found that the power characteristics of metal-air cell could be improved by using magnesium electrode materials in the NaCl electrolyte.

Characteristics of Carbon Nanotube Anode for flexible displays and characteristics of OLEDs fabricated on Carbon Nanotube Anode (플렉시블 디스플레이용 CNT 애노드 특성 및 이를 이용하여 제작한 플렉시블 OLED 특성 분석)

  • Kim, Han-Ki;Jung, Jin-A;Moon, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.416-417
    • /
    • 2007
  • We prepared flexible transparent conducting electrodes by spray coating of single-walled carbon nanotube (SWNT) networks on PET substrate and have demonstrated their use as transparent anodes for flexible organic light emitting diodes (OLEDs). The flexible CNT electrode produced by spray coating method shows relatively low sheet resistance ($150{\sim}220{\Omega}/sq.$) and high transmittance of ~60% even though it was prepared at room temperature. In addition, CNT electrode/PET sample exhibits little resistance change during 2000 bending cycles, demonstrated good mechanical robustness. Using transparent CNT electrode, it is readily possible to achieve performances comparable to commercial ITO-based OLEDs. This indicates that flexible CNT electrode is alternative anode materials for conventional ITO anode in flexible OLEDs.

  • PDF

Effect of Metal Ni Atomic Layer Deposition Coating on Ni/YSZ, Anode of Solid Oxide Fuel Cells (SOFCs) (고체산화물 연료전지의 Anode인 Ni/YSZ에 Ni 원자층 증착 코팅의 효과)

  • Kim, Jun Ho;Mo, Su In;Park, Gwang Seon;Kim, Hyung Soon;Kim, Do Heyoung;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • This study is to increase the surface area and maximize the effect of the catalyst by coating a nanometersized metal catalyst material on the anode layer using atomic layer deposition (ALD) technology. ALD process is known to produce uniform films with well-controlled thickness at the atomic level on substrates. We measured the performance by coating metals (Ni) on Ni/YSZ, which is the most widely known anode material for solid oxide fuel cells. ALD coatings began to show a decrease in cell performance over 3 nm coatings.

Performance of Single Cells with Anode Functional Layer for SOFC

  • Choi, Jin-Hyeok;Lee, Tae-Hee;Park, Tae-Sung;Yoo, Young-Sung
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • To improve the performance of the anode-supported Solid Oxide Fuel Cell (SOFC) which can be operated at an intermediate temperature, the functional layer (FL) is introduced on a anode substrate. And the scandia-stabilized zirconia (ScSZ) and samaria-doped ceria (SDC) which have higher ionic conductivity and better chemical stability than yttria-stabilized zirconia (YSZ) are used as material for the anode FL with the Ni, The fabrication process of anode-supported single cell with the anode FL was established and the power density of those was evaluated. As a result, the sample with anode FL (Ni-YSZ) has higher power density than normal cell. The single cell which was composed of the FL (Ni-YSZ) and electrolyte (YSZ) showed about $550mW/cm^2$ of the maximum power density at $650^{\circ}C$ and $1430mW/cm^2$ at $750^{\circ}C$ respectively, In case of the single cell using the ScSZ and SDC as anode FL, the performance of samples decreased rapidly and those showed unstable voltage during long-term test. In case of using methane as a fuel, the cell performance with each FL decreased comparing with $H_2$ fuel. In the region of a high current density, there are large concentration polarizations.

  • PDF

A Study on the Development of Anode Material for Molten Carbonate Fuel Cell -Ni-Co anode- (용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구-Ni-Co양극에 관하여-)

  • 황상문;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.166-175
    • /
    • 1994
  • The effect of Co addition on the electrochemical performance and structural stability of porous Ni anode for molten carbonate fuel cell(MCFC) was evaluated by the anodic polarization and the sintering test in the simulated MCFC anode condition ($650^{\circ}C$, 80% $H_2$+20%$CO_2$). The anode current density ranged from 110mA/$cm^2$ to 144mA/$cm^2$ was obtained at +100mV overpotential by additions of Co up to 10 wt.%. The sintering resistance of Ni-Co anodes was higher than that of the pure Ni anode. The increase of sintering resistance seemed to be to the lower diffusion coefficient of Co than that of Ni.

  • PDF

Electoless Ni Plating on Alumina Powder to Application of MCFC Anode Material (MCFC anode 대체 전극 개발을 위한 분말 알루미나 상의 무전해 Ni 도금 연구)

  • Kim, Ki-Hyun;Cho, Kye-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.131-137
    • /
    • 2007
  • The typical MCFC (molten carbonate fuel cell) anode is made of Ni-10%Cr alloy. The work of this paper is focused concerning long life of anode because Ni-10% Cr anode is suffering from sintering and creep behavior during cell operation. Therefore, Ni-coated Alumina powder($20{\mu}m$) was developed by electroless nickel plating. Optimum condition of electroless nickel coation on $20{\mu}m$ alumina is as follows: pH 11.7, temperature $65{\sim}80^{\circ}C$, powder amount $100cm^2/l$. The deposition rate for Ni-electroless plating was as a function of temperature and activation energy was evaluated by Arrhenius Equation thereby activation energy calculated slope of experimental data as 117.6 kJ/mol, frequency factor(A) was $6.28{\times}10^{18}hr^{-1}$, respectively.

Electrochemistry Characteristics of $Li_4Ti_5O_{12}$ Anode Electrode for Li-ion Battery (리튬전지용 $Li_4Ti_5O_{12}$ 음극전극의 전기화학적 특성)

  • Oh, Mi-Hyun;Kim, Han-Joo;Kim, Young-Jae;Son, Won-Keun;Lim, Kee-Joe;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.340-341
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. $Li_4Ti_5O_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here $Li_4Ti_5O_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of $Li_4Ti_5O_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\sim$ 3.0 V. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transfer during the lithium intercalation and deintercalation process.

  • PDF

Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor (회전킬른반응기를 이용한 리튬이온전지용 Si/C/CNF 음극활물질의 제조 및 전기화학적 특성 조사)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.901-908
    • /
    • 2018
  • Graphite is used as a sample anode active material. However, since the maximum theoretical capacity is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of a high capacity lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is higher than that of graphite. However, it is not suitable for direct application to the anode active material because it has a volume expansion of 400%. In order to minimize the decrease of the discharge capacity due to the volume expansion, the Si was pulverized by the dry method to reduce the mechanical stress and the volume change of the reaction phase, and the change of the volume was suppressed by coating the carbon layers to the particle size controlled Si particles. And carbon fiber is grown like a thread on the particle surface to control secondary volume expansion and improve electrical conductivity. The physical and chemical properties of the materials were measured by XRD, SEM and TEM, and their electrochemical properties were evaluated. In this study, we have investigated the synthesis method that can be used as anode active material by improving cycle characteristics of Si.

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated (Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가)

  • Oh, Mi Young;Ishihara, Tatsumi;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).