• Title/Summary/Keyword: Anode

Search Result 2,547, Processing Time 0.032 seconds

Fabrication and Electrochemical Characterization of All Solid-State Thin Film Micro-Battery by in-situ Sputtering (In-situ 스퍼터링을 이용한 잔고상 박막 전지의 제작 및 전기화학적 특성 평가)

  • Jeon Eun Jeong;Yoon Young Soo;Nam Sang Cheol;Cho Won Il;Shin Young Wha
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 2000
  • All solid-state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of $Li/LiPON/V_2O_5Pt$. The effect of various oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by d.c. reactive sputtering deposition were investigated. The vanadium oxide thin film with deposition condition of $20\%\;O_2/Ar$ ratio showed good cycling behavior. In in-siか process, the LiPON electrolyte was deposited on the $V_2O_5$ films without breaking vacuum by r.f. magnetron sputtering at room temperature. After deposition of the amorphous LiPON, the Li metal films were grown by a thermal evaporator in a dry room. The charge-discharge cycle measurements as a function of current density and voltage variation revealed that the $Li/LiPON/V_2O_5$ thin film had excellent rechargeable properly when current density was $7{\mu}A/cm^2$. and cut-off voltage was between 3.6 and 2.7V In practical experiment, a stopwatch ran on this $Li/LiPON/V_2O_5$ thin film micro-battery. This result means that thin film micro-battery fabricated by in-siか process is a promising for power source for electronic devices.

Characteristics of Li-ion battery using polymeric gel electrolytes reinforced with glass fiber cloth (유리섬유 cloth가 보강된 겔상의 고분자 필름을 전해질로 이용한 리튬이온 전지의 특성)

  • Park Ho Cheol;Kim Sang Hern;Chun Jong Han;Ko Jang Myoun;Jo Soo Ik;Sohn Hun-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.100-103
    • /
    • 2000
  • Polymeric gel electrolytes based on polyacrylronitile blended with poly(vinylidene fluoride-co-hexafluoro-propylene)(P(VdF-co-HFP), which were reinforced with glass fiber cloth(GFC) to increase the mechanical strength, were prepared for the practical use in secondary battery. Test cell consisting of $LiCoO_2$ as a cathode and mesophase pich-based ca.bon fiber (MCF) as an anode material showed a capacity of 110 mAh/g based on the cathode weight at 0.2C rate at room temperature. Over $80\%$ of initial capacity was retained after 400cycles, indicating that GFC is suitable for a reinforcing material to increase the mechanical strength of gel based electrolytes.

Evaluation of Corrosion Characteristics of Underwater Hardening Paint (수중 경화형도료의 부식특성에 관한 전기화학적 고찰)

  • Moon, Kyung-Man;Oh, Min-Seok;Lee, Myung-Hoon;Lee, Syung-Yul;Kim, Yun-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.85-91
    • /
    • 2011
  • Many protection methods such as surface coating, electric protection, or other methods have been applied to the numerous steel structures widely used in continental and marine areas to control their corrosion, which is done from an economic point of view. Most of these steel structures are primarily protected by coating methods. However, some steel piles under seawater are protected by the electric protection method, that is, either using an impressed current or a sacrificial anode method. Furthermore, environmental contamination may cause a severely corrosive environment, which, in turn, causes the accelerated corrosion of steel structures. Subsequently, coated steel structures could deteriorate more rapidly than the designed lifetime because of the acid rain caused by air pollution, etc. Therefore, a coating of marine paint exposed to seawater, that is, underwater hardening painting, is increasingly required to be fast drying as well as highly corrosion resistant. In this study, five types of underwater hardening paints were prepared with different resin series and additives. Their corrosion and water resistances were investigated using electrochemical methods such as corrosion potential, polarization curves, impedance and cyclic voltammogram measurements, etc. Even though it is generally accepted that the corrosion resistance of bare steel tends to increase with a shift of the corrosion potential in the noble direction, the corrosion resistance of a sample with a coating exhibited a relatively better tendency when it had a lower corrosion potential in this study. The corrosion current density was also decreased with a decrease in the diffusion limiting current density, which may mean that there is some relationship between corrosion and water resistance. The S sample of the ceramic resin series showed the relatively best corrosion and water resistance among those of samples, while the worst corrosion and water resistance were observed for the R sample of the epoxy resin series. The corrosion and water resistance of those samples tended to deteriorate with an increase in the immersion days, and their corrosion and water resistances were considered to be apparently improved by the types of resin and additives.

Amorphous Lithium Lanthanum Titanate Solid Electrolyte Grown on LiCoO2 Cathode by Pulsed Laser Deposition for All-Solid-State Lithium Thin Film Microbattery (전고상 리튬 박막 전지 구현을 위해 펄스 레이저 증착법으로 LiCoO2 정극위에 성장시킨 비정질 (Li, La)TiO3고체 전해질의 특성)

  • 안준구;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.593-598
    • /
    • 2004
  • To make the all-solid-state lithium thin film battery having less than 1 fm in thickness, LiCoO$_2$ thin films were deposited on Pt/TiO$_2$/SiO$_2$/Si substrate as a function of Li/Co mole ratio and the deposition temperature by Pulsed Laser Deposition (PLD). Especially, LiCoO$_2$ thin films deposited at 50$0^{\circ}C$ with target of Li/Co=1.2 mole ratio show an initial discharge capacity of 53 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 67.6%. The microstructural and electrochemical properies of (Li, La)TiO3 thin films grown on LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si structures by Pulsed Laser Deposition (PLD) were investigated at various deposition temperatures. The thin films grown at 10$0^{\circ}C$ show an initial discharge capacity of approximately 51 $\mu$Ah/cm$^2$-$\mu$m and moreover show excellent discharge capacity retention of 90% after 100 cycles. An amorphous (Li, La)TiO$_3$ solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium thin film battery below 1 $\mu$m.

Design and Construction of Multi-wire Proportional Counter and Preamplifier for Measurement of Charged Particle (하전입자의 측정을 위한 다중선 비례계수기와 전치증폭기의 설계 제작)

  • Kim, Jong-Soo;Yoon, Suk-Chull
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.139-143
    • /
    • 1996
  • A multi-wire proportional counter with large sensitive area was designed and constructed considering diameter of anode wire. its material and space. A preamplifier connecting detector to main amplifier or counter was also designed and constructed for measurement output pulse from multi-wire proportional counter. The preamplifier was composed of charge-sensitive differential circuit. clipping circuit and amplification circuit. To test the performance of this equipment, terminal output pulse from the preamplifier was measured and compared with noise For these tests $^{239}Pu(360 Bq)\;and\; ^{90}Sr/^{90}Y(250 Bq)$ were used as radiation sources. The noise ingredient contributing to the maximum amplitude(180mV from $^{239}Pu$ and 200 mV from $^{90}Sr/^{90}Y$) was found to be very small(8 mV) Piled up pulse occurring at the output pulse of charge-sensitive differential circuit was measured as an independent pulse since this affected the amplification in the clipping circuit and amplification circuit. This information can be used to improve the loss of measurement due to piled up pulse.

  • PDF

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

A Case Study of Different Configurations for the Performance Analysis of Solid Oxide Fuel Cells with External Reformers (외부 개질형 평판형 고체 산화물 연료전지 시스템 구성법에 따른 효율특성)

  • Lee, Kang-Hun;Woo, Hyun-Tak;Lee, Sang-Min;Lee, Young-Duk;Kang, Sang-Gyu;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.343-350
    • /
    • 2012
  • A planar solid oxide fuel cell (PSOFC) is studied in its application in a high-temperature stationary power plant. Even though PSOFCs with external reformers are designed for application from the distributed power source to the central power plant, such PSOFCs may sacrifice more system efficiency than internally reformed SOFCs. In this study, modeling of the PSOFC with an external reformer was developed to analyze the feasibility of thermal energy utilization for the external reformer. The PSOFC system model includes the stack, reformer, burner, heat exchanger, blower, pump, PID controller, 3-way valve, reactor, mixer, and steam separator. The model was developed under the Matlab/Simulink environment with Thermolib$^{(R)}$ modules. The model was used to study the system performance according to its configuration. Three configurations of the SOFC system were selected for the comparison of the system performance. The system configuration considered the cathode recirculation, thermal sources for the external reformer, heat-up of operating gases, and condensate anode off-gas for the enhancement of the fuel concentration. The simulation results show that the magnitude of the electric efficiency of the PSOFC system for Case 2 is 12.13% higher than that for Case 1 (reference case), and the thermal efficiency of the PSOFC system for Case 3 is 76.12%, which is the highest of all the cases investigated.

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector (집속 회전형 X-선원과 이차원 검출기를 이용한 광물의 실시간 상전이 연구)

  • Seoung, Dong-Hoon;Lee, Yong-Moon;Lee, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.

The relation of structural transition, thermal and electrical stability deintercalation of Li- CICs(II) : For Li-EaGDICs and Li-EGDICs (Li-CICs의 Deintercalation에 따른 구조변이와 열적, 전기적 안정성과의 관계(II) : Li-EaGDICs와 Li-EGDICs에 관하여)

  • Oh, Won-Chun;Park, Chung-Oh;Back, Dae-Jin;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1996
  • We have discussed on the deintercalation process of Li-EaGICs and Li-EGICs synthesized under pressure and temperature by spontaneous oxidation reaction of those compounds based on the results of X-ray diffraction, thermal analysis and electrical specific resistivity analysis. According to the results of the X-ray analysis for the intercalation process, we have found that the stage 1 for Li-EaGICs and Li-EGICs were not completly formed, but their lower stages were formed mainly. And from this results of the deintercalation process, we have found that the deintercalation process did not occur any more after 4 weeks, and the Li-EGDICs have more residual lithium metals than LiEaGDICs between the graphite interlayers. According to the thermal decomposition analysis, Li-two compounds had included very hard exothermic reaction. And we have found that these compounds did not occrurred deintercalation reaction above $400^{\circ}C$. According to the results of the electrical specific resistivity measurements, Li-EGDICs have relatively lower electrical specific resistivity than Li-EaGDICs, and Li-EaGDICs showed a formation of the ideal curve. From these results, we can suggest that Li-EaGDICs have a better properties as an anode material secondary than Li-EGICs.

  • PDF

Studies on the anodic oxidation of some volatile organic halogen compounds(THM) (휘발성 할로겐 화합물(THM)의 양극 산화에 관한 연구)

  • Yoo, K.S.;Park, S.Y.;Yang, S.B.;Woo, S.B.
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.264-273
    • /
    • 1997
  • Anodic oxidation reaction was applied to remove trihalomethanes in an aqueous solution. Each component was determined by using solid phase microextraction(SPME) fiber and GC-ECD. Anodic and cathodic compartments were separated in order to protect contaminants and connected by $KNO_3$-agar bridge. The calibration graphs of the 6 THM components were shown good linearlity from a few ppb up to a few hundreds ppb concentration level. Anodes such as platinum(Pt), titanium(Ti). zircornium(Zr), titanium metal coated with iridium(Ti-Ir), and glassy carbon coated with mixed valence ruthenium(mv Ru) were tried to remove the THMs at different potentials. The best result was obtained on the Ti-Ir anode applied 9 volts DC. The electrode could effectively remove almost all the THM components from the stirring solution within about 1.5 hours. The glassy carbon electrode coated with mixed valence ruthenium showed excellent removing effect at the begining, but the maximum removing level was remained at 60% probably due to the destruction of the electrode surface. The concentration of chloroform, however, tends to be increased due to the electrode reaction producing the component at the condition.

  • PDF