• Title/Summary/Keyword: Anoctamin-2

Search Result 10, Processing Time 0.018 seconds

Multiple transcripts of anoctamin genes expressed in the mouse submandibular salivary gland

  • Han, Ji-Hye;Kim, Hye-Mi;Seo, Deog-Gyu;Lee, Gene;Jeung, Eui-Bae;Yu, Frank H.
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Purpose: Salivary fluid formation is primarily driven by Ca2+-activated, apical efflux of chloride into the lumen of the salivary acinus. The anoctamin1 protein is an anion channel with properties resembling the endogenous calcium-activated chloride channels. In order to better understand the role of anoctamin proteins in salivary exocrine secretion, the expression of the ten members of the anoctamin gene family in the mouse submandibular gland was studied. Methods: Total RNA extracted from mouse submandibular salivary glands was reverse transcribed using primer pairs to amplify the full-length coding regions of each anoctamin gene and was subcloned into plasmid vectors for DNA sequencing. Alternative splice variants were also screened by polymerase chain reaction using primer pairs that amplified six overlapping regions of the complementary DNA of each anoctamin gene, spanning multiple exons. Results: Multiple anoctamin transcripts were found in the mouse submandibular salivary gland, including full-length transcripts of anoctamin1, anoctamin3, anoctamin4, anoctamin5, anoctamin6, anoctamin9, and anoctamin10. Exon-skipping splicing in the N-terminal exons of the anoctamins1, anoctamin5, and anoctamin6 genes resulted in multiple alternative splice variants. No expression of anoctamin2, anoctamin7, or anoctamin8 was found. Conclusions: The predominant anoctamin transcript expressed in the mouse submandibular gland is anoctamin1ac. The chloride channel protein produced by anoctamin1ac is likely responsible for the $Ca^{2+}$-activated chloride efflux, which is the rate-limiting step in salivary exocrine secretion.

Ca2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca2+-Binding Reservoir at the N-Terminal Domain

  • Roh, Jae Won;Hwang, Ga Eun;Kim, Woo Kyung;Nam, Joo Hyun
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.88-100
    • /
    • 2021
  • Anoctamin 6/TMEM16F (ANO6) is a dual-function protein with Ca2+-activated ion channel and Ca2+-activated phospholipid scramblase activities, requiring a high intracellular Ca2+ concentration (e.g., half-maximal effective Ca2+ concentration [EC50] of [Ca2+]i > 10 μM), and strong and sustained depolarization above 0 mV. Structural comparison with Anoctamin 1/TMEM16A (ANO1), a canonical Ca2+-activated chloride channel exhibiting higher Ca2+ sensitivity (EC50 of 1 μM) than ANO6, suggested that a homologous Ca2+-transferring site in the N-terminal domain (Nt) might be responsible for the differential Ca2+ sensitivity and kinetics of activation between ANO6 and ANO1. To elucidate the role of the putative Ca2+-transferring reservoir in the Nt (Nt-CaRes), we constructed an ANO6-1-6 chimera in which Nt-CaRes was replaced with the corresponding domain of ANO1. ANO6-1-6 showed higher sensitivity to Ca2+ than ANO6. However, neither the speed of activation nor the voltage-dependence differed between ANO6 and ANO6-1-6. Molecular dynamics simulation revealed a reduced Ca2+ interaction with Nt-CaRes in ANO6 than ANO6-1-6. Moreover, mutations on potentially Ca2+-interacting acidic amino acids in ANO6 Nt-CaRes resulted in reduced Ca2+ sensitivity, implying direct interactions of Ca2+ with these residues. Based on these results, we cautiously suggest that the net charge of Nt-CaRes is responsible for the difference in Ca2+ sensitivity between ANO1 and ANO6.

Immunohistochemical Localization of Anoctamin 1 in the Mouse Cerebellum

  • Park, Yong Soo;Jeon, Ji Hyun;Lee, Seung Hee;Paik, Sun Sook;Kim, In-Beom
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.110-116
    • /
    • 2018
  • Since a transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), was identified as a bona fide calcium ($Ca^{2+}$)-activated chloride ($Cl^-$) channel (CaCC), there have been many reports on its expression and function. However, limited information on ANO1 expression and function in the brain is still available. In this study, we tried to reexamine expression patterns of ANO1 in the mouse cerebellum and further characterize ANO1-expressing components by immunohistochemical analyses. Strong ANO1 immunoreactivity was observed as large puncta in the granule cell layer and weak to moderate immunoreactivities were observed as small puncta in the molecular and Purkinje cell layers. Double-label experiments revealed that ANO1 did not colocalize with cerebellar neuronal population markers, such as anti-calbindin and anti-NeuN, while it colocalized or intermingled with a presynaptic marker, anti-synaptophysin. These results demonstrate that ANO1 is mainly localized at presynaptic terminals in the cerebellum and involved in synaptic transmission and modulation in cerebellar information processing.

Calcium-activated chloride channels: a new target to control the spiking pattern of neurons

  • Ha, Go Eun;Cheong, Eunji
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.109-110
    • /
    • 2017
  • The nature of encoded information in neural circuits is determined by neuronal firing patterns and frequencies. This paper discusses the molecular identity and cellular mechanisms of spike-frequency adaptation in the central nervous system (CNS). Spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is mediated by the $Ca^{2+}$-activated $Cl^-$ channel (CACC) anoctamin-2 (ANO2). Knockdown of ANO2 in these neurons results in increased number of spikes, in conjunction with significantly reduced spike-frequency adaptation. No study has so far demonstrated that CACCs mediate afterhyperpolarization currents, which result in the modulation of neuronal spike patterns in the CNS. Our study therefore proposes a novel role for ANO2 in spike-frequency adaptation and transmission of information in the brain.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

Functional roles of glutamic acid E143 and E705 residues in the N-terminus and transmembrane domain 7 of Anoctamin 1 in calcium and noxious heat sensing

  • Choi, Jonghyun;Jang, Yongwoo;Kim, Haedong;Wee, Jungwon;Cho, Sinyoung;Son, Woo Sung;Kim, Sung Min;Yang, Young Duk
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.236-241
    • /
    • 2018
  • Anoctamin 1 (ANO1) is an anion channel that is activated by changes in cytosolic $Ca^{2+}$ concentration and noxious heat. Although the critical roles of ANO1 have been elucidated in various cell types, the control of its gating mechanisms by $Ca^{2+}$ and heat remain more elusive. To investigate critical amino acid residues for modulation of $Ca^{2+}$ and heat sensing, we constructed a randomized mutant library for ANO1. Among 695 random mutants, reduced $Ca^{2+}$ sensitivity was observed in two mutants (mutant 84 and 87). Consequently, the E143A mutant showed reduced sensitivity to $Ca^{2+}$ but not to high temperatures, whereas the E705V mutant exhibited reduced sensitivity to both $Ca^{2+}$ and noxious heat. These results suggest that the glutamic acids (E) at 143 and 705 residues in ANO1 are critical for modulation of $Ca^{2+}$ and/or heat responses. Furthermore, these findings help to provide a better understanding of the $Ca^{2+}$-mediated activation and heat-sensing mechanism of ANO1.

Expression of anoctamin 7 (ANO7) is associated with poor prognosis and mucin 2 (MUC2) in colon adenocarcinoma: a study based on TCGA data

  • Chen, Chen;Siripat Aluksanasuwan;Keerakarn Somsuan
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.46.1-46.10
    • /
    • 2023
  • Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.

Testosterone secretion is affected by receptor tyrosine kinase c-Kit and anoctamin 1 activation in mouse Leydig cells

  • Ko, Eun-A;Woo, Min Seok;Kang, Dawon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.87-95
    • /
    • 2022
  • Receptor tyrosine kinase c-Kit, a marker found on interstitial cells of Cajal (ICCs), is expressed in Leydig cells, which are testicular interstitial cells. The expression of other ICC markers has not yet been reported. In this study, we investigated the expression of c-Kit and anoctamin 1 (ANO1), another ICC marker, in mouse testes. In addition, the relationship between c-Kit and ANO1 expression and Leydig cell function was investigated. We observed that c-Kit and ANO1 were predominantly expressed in mouse Leydig cells. The mRNA and protein of c-Kit and ANO1 were expressed in TM3, a mouse Leydig cell line. LH induced an increase in intracellular Ca2+ concentration, membrane depolarization, and testosterone secretion, whereas these signals were inhibited in the presence of c-Kit and ANO1 inhibitors. These results show that c-Kit and ANO1 are expressed in Leydig cells and are involved in testosterone secretion. Our findings suggest that Leydig cells may act as ICCs in testosterone secretion.

Effects of Carthami flos on pacemaker potentials of small intestinal and colonic interstitial Cells of Cajal (홍화의 생쥐 소장 및 대장 카할 간질세포의 향도잡이 전위 조절에 미치는 효능에 관한 연구)

  • Kim, Byung Joo
    • Herbal Formula Science
    • /
    • v.27 no.4
    • /
    • pp.237-244
    • /
    • 2019
  • Objectives : The purpose of this study was to investigate the effects of Carthami flos on pacemaker potentials of small intestinal and colonic Interstitial Cells of Cajal (ICC). Methods : To dissociate the ICC, we used enzymatic digestions from the small intestine and colon in mice. In the ICC, the electrophysiological whole-cell patch-clamp configuration was used to record pacemaker potentials in the cultured ICC. Results : 1. The ICC generated pacemaker potentials in the murine small intestine and colon. 2. Pretreatment with a Ca2+ free solution and thapsigargin, a Ca2+-ATPase inhibitor in the endoplasmic reticulum, stopped the pacemaker potentials. In the case of Ca2+-free solutions, Carthami flos did not induce membrane depolarizations in the murine small intestine and colon. However, when thapsigargin in a bath solution was applied, Carthami flos induced membrane depolarizations only in the murine colon. 3. Pretreatment with 2-APB (transient receptor potential melastatin (TRPM) channel inhibitor) abolished the pacemaker potentials and suppressed Carthami flos-induced effects in the murine small intestine and colon. 4. However, pretreatment with T16Ainh-AO1 (Ca2+ activated Cl- channel; anoctamin 1 (ANO1) inhibitor) did not affect the pacemaker potentials and induced Carthami flos-induced effects only in the murine small intestine. Conclusions : These results suggest that Carthami flos can modulate the pacemaker activity of ICC and the mechanisms underlying pacemaking in ICC might be different in the small intestine and the colon.

Effects of Gamisoyo-san, Banhasasim-tang and Bojungikki-tang in Colonic Interstitial cells of Cajal in mice (생쥐 대장 카할세포에서 가미소요산, 반하사심탕 및 보중익기탕의 효과에 관한 비교연구 )

  • Na Ri Choi;Woo-Gyun Choi;Byung Joo Kim
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • Objectives : The purpose of this study was to examine the effects of insurance herbal medicines on colonic interstitial Cells of Cajal (ICC) in mice. Methods : Among the insurance herbal medicines, we chose Gamisoyo-san (GSS), Banhasasim-tang (BHSST) and Bojungikki-tang (BGIKT). We made the ICC culture in large intestine in mice and used the electrophysiological method to record pacemaker potentials. Also we used MTT assay to check cell viability and examined the ICC protein expression by western blot. Results : 1. GSS (1-10 mg/ml) induced the pacemaker potential depolarization and decreased frequency with concentration-dependent manners in colonic ICC. EC50 is 2.99 mg/ml. BHSST (1-10 mg/ml) induced the pacemaker potential depolarization and decreased frequency with concentration-dependent manners in colonic ICC. EC50 is 2.76 mg/ml. BGIKT (1-10 mg/ml) induced the pacemaker potential depolarization and decreased frequency with concentration-dependent manners in colonic ICC. EC50 is 4.49 mg/ml. 2. GSS, BHSST and BGIKT had no effects on cell viability in colonic ICC. 3. GSS and BGIKT increased the Anoctamin-1 (ANO1) protein expression and BHSST increased the transient receptor potential melastatin-subfamily member 7 (TRPM7) protein expression in colonic ICC. Conclusions : These results suggest that GSS, BHSST, and BGIKT have shown the potential to regulate gastrointestinal (GI) motility by regulating colonic ICC and may show the potential to treat colon-derived GI diseases such as irritable bowel syndrome (IBS).