• Title/Summary/Keyword: Annulus flow

Search Result 183, Processing Time 0.035 seconds

Study on the manufacturing technology of the annulus gear by using flow-forming method (Flow-forming 공법을 이용한 annulus gear 제조 기술 연구)

  • Lee, S.M.;Kim, B.J.;Beon, W.Y.;Kim, T.D.;Park, E.S.;Kwon, Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2011.06a
    • /
    • pp.261-262
    • /
    • 2011
  • Conventional automatic transmission system includes a hydrodynamic torque converter to transfer engine torque from an engine crank shaft to a rotatable input members, which are of complex design permitting them to serve several functions. These are clutches or brakes which couple the rotatable input member to member of a planetary gear set. The annulus gear for an automatic transmission is a monolithic gear having a set of gear teeth formed on an inner surface which is coupling with a set of planetary gear. In this study, the flow forming method is applied to the manufacturing of the annulus gear. This cold forming is proper method in order to manufacture dimensionally precise and round hollow components such as annulus gear. By pre-calculated amount of wall thickness reduction, the seamless tube of SAE1026 is compressed above its yield strength, plastically deformed and made to flow in several roll passes. According to this study, the desired geometry of the annulus gear can be achieved when the outer diameter and the thickness of the tube are properly decreased by compressed roll passes and the available material volume is easily forced to flow longitudinally over the shape of mandrel.

  • PDF

Natural Convection of Air in a Horizontal Annulus with the Inner Cylinder Cooled by Constant Heat Flux (일정 열 유속으로 냉각되는 안쪽 실린더를 갖는 수평 환형 공간에서의 공기의 자연 대류)

  • 유주식;엄용균;김용진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.755-762
    • /
    • 2000
  • Natural convection of air in a horizontal annulus with the inner cylinder cooled by the application of a constant heat flux and the isothermally heated outer cylinder is considered. The bifurcation phenomenon of flow patterns and the heat transfer characteristics are numerically investigated. The zero initial condition induces a unicellular flow in a half annulus. A bicellular flow consisting of two counter-rotating eddies in a half annulus can be obtained above a certain critical Rayleigh number. A transition from the bicellular to the unicellular flow occurs with a decrease in Rayleigh number. Hysteresis phenomena have not been observed. In the regime of dual flows, the overall Nusselt number of the bicellular flow is greater than that of the unicellular flow.

  • PDF

TRIPLE SOLUTIONS IN NATURAL CONVECTION OF A FLUID IN A HORIZONTAL ANNULUS WITH CONSTANT TEMPERATURE WALLS (일정 온도 벽면을 갖는 수평 환형공간 내의 유체의 자연 대류에서의 삼중해)

  • Yoo, Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.110-115
    • /
    • 2017
  • Natural convection of a fluid with the Prandtl number of 7(water) in a horizontal annulus with constant temperature walls is numerically investigated. The inner cylinder is hotter than the outer cylinder. The flows are classified by the number of eddies in a half annulus. It is found that dual or triple solutions exists above a critical Rayleigh number for an annulus with a aspect ratio $D_i/L=4$. Transitions of $3{\rightarrow}1$ and $2{\rightarrow}1$ eddy flow occur with decrease of Rayleigh number. However, reverse transitions of $1{\rightarrow}3$ and $1{\rightarrow}2$ eddy flow do not occur with increase of Rayleigh number, and no hysteresis phenomenon is observed. In the regime of triple solutions, the 3 eddy flow has the largest mean Nusselt number value and the 1 eddy flow has the smallest value.

Helical flow of Newtonian and non-Newtonian fluid in an nnulus (뉴튼 및 비뉴튼 유체의 헬리컬 유동에 관한 연구)

  • Woo, Nam-Sub;Seo, Byung-Taek;Bae, Kyung-Su;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1634-1639
    • /
    • 2004
  • The present study concerns a experimental study of fully developed laminar flow of a Newtonian and non-Newtonian fluid through a concentric annulus with a combined bulk axial flow and inner cylinder rotation for the various radius ratio. This study shows the fundamental difference between Newtonian and non-Newtonian fluid flow in an annulus for various radius ratio.

  • PDF

Mixed-Convection in an Annulus Between Co-Rotating Horizontal Cylinders (동시 회전하는 수평 실린더 내 환상공간에서의 혼합대류)

  • Lee, Gwan-Su;Kim, Yang-Hyeon;Im, Gwang-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.622-628
    • /
    • 2002
  • Numerical analysis has been carried out for two-dimensional steady and unsteady mixed convection in the annulus between co-rotating horizontal cylinders with a heated inner cylinder. The ratio of annulus gap($\sigma$) is taken from 1 to 10 and the order of mixed-convection parameter B(=Gr/(1+Re)$^2$) varies from 10$^4$to $10^0$. The flow patterns over this parameter range are steady multicellular, oscillatory multicellular or steady unicellular. The addition of co-rotating of both cylinders stabilizes the flow in the annulus and weakens the unsteadiness. Even in the large values of rotating parameter such as of $10^0$/($\sigma$=2) and 10$^2$($\sigma$=10), the flow pattern becomes asymptotic to the steady unicellular flow, like as in the rigid-body rotating flow.

Mixed convection of air in a horizontal cylindrical annulus with rotating outer cylinder (회전하고 있는 바깥쪽 실린더를 갖고 있는 수평 원주형 환형 내에서의 공기의 혼합 대류)

  • Yu, Ju-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.551-561
    • /
    • 1997
  • Mixed convection of air in a horizontal concentric cylindrical annulus is investigated numerically. Isothermal boundary conditions are prescribed at the inner and outer cylinders, with the inner cylinder being warmer. The forced flow is induced by the outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of the annulus. The effect of the forced flow on the flow pattern and heat transfer of natural convection is investigated for the annulus of (inner-cylinder radius/gap width) = 1. There appear two eddies, one eddy or no eddy according to the Rayleigh and Reynolds numbers. Map of the three flow regimes is constructed on the Ra-Re plane. (author). 28 refs., 9 figs., 2 tabs.

POOL BOILING HEAT TRANSFER IN A VERTICAL ANNULUS WITH A NARROWER UPSIDE GAP

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1285-1292
    • /
    • 2009
  • The effects of the narrowed upside gap on nucleate pool boiling heat transfer in a vertical annulus were investigated experimentally. For the study, a stainless steel tube with a diameter of 25.4 mm and saturated water that kept an atmospheric condition were used. The ratio between the gaps measured at the upper and the lower regions of the annulus ranged from 0.18 to 1. Two different lengths of the modified gap also were investigated. The change in heat transfer due to the modified gap became evident as the gap ratio decreased and the length of the gap increased. As the gap ratio became less than 0.51, a significant decrease in heat transfer was observed compared to the plain annulus. The longer gap size resulted in an additional decrease in heat transfer. The major cause for the tendency was attributed to the formation of lumped bubbles around the upper region of the annulus followed by the increased flow friction between the fluid and the surface around the modified gap.

Mixed Convection in a Horizontal Annulus with a Rotating Cylinder (하나의 실린더가 회전하는 수평 환형 공간에서의 혼합 대류)

  • Yoo Joo-Sik;Ha Dae-Hong
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • Mixed convection in a horizontal annulus is considered, and the effect of a forced flow on the natural convective flow is investigated. The inner cylinder is hotter than the outer cylinder, and the outer cylinder is rotating with constant angular velocity with its axis at the center of the annulus. The unsteady streamfunction-vorticity equation is solved with a finite difference method. For the fluid with Pr=0.7, there appear flows with two eddies, one eddy, or no eddy according the Rayleigh and Reynolds numbers. The rotation of the outer cylinder reduces the heat transfer rate at the wall of the annulus. The oscillatory multicellular flow of a low Prandtl number fluid with Pr=0.01 can be effectively suppressed by the forced flow.

  • PDF

Solid-liquid mixture flow characteristics in an inclined slim hole annulus (Slim hole 경사 환형관내 고-액 혼합유동 특성에 관한 연구)

  • Suh, Byung-Taek;Han, Sang-Mok;Woo, Nam-Sub;Kim, Young-Ju;Hwang, Young-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1315-1320
    • /
    • 2008
  • An experimental study was carried out to study the solid-liquid mixture upward flow in a vertical and inclined annulus with rotating inner cylinder. Lift forces acting on a fluidized particle plays a central role in many importance applications, such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport and cleaning of particles from surfaces, etc. Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. Effect of annulus inclination and drill pipe rotation on the carrying capacity of drilling fluid, particle rising velocity, and pressure drop in the slim hole annulus have been measured for fully developed flows of water and of aqueous solutions.

  • PDF

A Study on the Transitional Flows in a Concentric Annulus with Rotating Inner Cylinder (안쪽 축이 회전하는 환형관내 천이유동에 관한 연구)

  • 김영주;황영규;우남섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.833-843
    • /
    • 2002
  • The present experimental and numerical investigations are performed for the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin- friction coefficients have been measured for the fully developed flow of water and glycerine-water solution (44%) with the inner cylinder rotating at speed of 0∼600 nm, respectively. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime.