• 제목/요약/키워드: Annular Fuel

검색결과 70건 처리시간 0.021초

대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석 (Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks)

  • 김경호;신동환;김용찬;강상우
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.

The Development of LPP Combustor for ESPR

  • Kinoshita, Yasuhiro;Oda, Takeo;Kobayashi, Masayoshi;Ninomiya, Hiroyuki;Kimura, Hideo;Hayashi, Shigeru;Yamada, Hideship;Shimodaira, Kazuo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.453-459
    • /
    • 2004
  • An axially staged combustor equipped with an LPP combustion system and CMC liner walls has been investigated for stable combustion and low NOx emissions for the ESPR project. Several fuel injectors were designed and manufactured for the LPP burner, and single sector combustor tests were conducted to evaluate fundamental combustion characteristics such as emissions, instabilities, auto-ignition, and flash back at typical operating conditions from idle to Mn 2.2 cruise. The latest test results showed that the LPP burner had a good potential for the low NOx target. It was also found that the NOx emission level was greatly affected by a distortion in the air flow velocity field upstream of the LPP burner due to the diffuser and fuel feed arm. The CMC material was investigated to apply for the high temperature and low NOx combustor. Annular combustor liner walls were manufactured with the CMC material, and they have been tested at low pressure conditions to evaluate the soundness of the material and the mounting and seal system. This paper reports the latest research activities on the LPP combustion system and CMC liner walls for the ESPR project.

  • PDF

이중 동축 확산화염의 형상 및 배출 특성 (Measurement of soot concentration in flames using laser-induced incandescence method)

  • 정종수;이교우
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.49-57
    • /
    • 1999
  • An experimental study on double-concentric diffusion flame has been carried out in order to investigate the shape, the flame length, and the other characteristics of the flame. Flow visualization of the flame by the $TiO_2$ particles and also the emission measurements are conducted. The commercial grade LP gases are used as fuel. The inverse diffusion flames are formed at the center when the central air flow rate is about 0.1 L/min. With a larger flow rate of the central air jet than 0.2 L/min the flame turns to be an annular-shaped flame, which is very bright. When the central air flow rate increases over 2.4 L/min, the flame turns to blue and the flame tips are opened because of the lifting of the inner part of the flame. Because of this lifting and the incomplete combustion, the CO emission increases abruptly from 25 ppm to more than 150 ppm. On the contrary, the NOx emission is decreased.

  • PDF

모형 가스터빈 연소기에서의 분무 및 연소 특성 (Spray and Combustion Characteristics in Model Gas Turbine Combustor)

  • 황진석;구자예;성홍계;강정식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.381-386
    • /
    • 2007
  • 액체 연료를 사용하는 가스터빈 연소기에서의 분무 및 연소 특성을 알아보기 위해 본 연구에서는 KIVA-3V를 이용하여 애뉼러형 모형 가스터빈 연소기에서 Jet-A의 분무와 연소에 의한 열유동 현상을 수치해석을 통하여 연구하였다. 홀을 통해 유입되는 냉각유동이 있을 경우, 유입 유동이 최적화되지 않으면 액체연료의 분무는 주위 유동장의 영향을 크게 받아 후류에서 SMD가 증가하고, 등가비의 수직적 분포가 일어나기 어렵게 된다. 화염이 연소실의 중앙 부분에서 좌우로 넓게 발생하며, 유동에 의해 화염의 후류가 갈라지는 현상이 있었으며 이로 인해 화염중심부가 분리되고 국소적인 고온부가 생성되어 NO의 발생이 증가하는 영역이 발생하였다.

  • PDF

LNG 벙커링용 고효율 LNG 저장탱크 열해석 (Thermal analysis of LNG storage tank for LNG bunkering system)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권9호
    • /
    • pp.876-880
    • /
    • 2015
  • IMO의 규제인 신조 선박에 대한 NOx 80% 감축의 2016년 발효를 앞두고, 청정에너지인 LNG연료 선박 및 벙커링 선박의 보급이 유럽 선진국들을 중심으로 추진되고 있다. LNG 저장탱크는 LNG 벙커링의 필수 설비로 현재의 액체질소 등을 저장하는 극저온 액체 저장탱크와 동일한 구조이며, IMO의 "C"형 가압탱크인 내외 용기로 구성된 2중 탱크에 진공펄라이트 단열재가 충전되는 형식이다. 그러나 이 단열방식은 진공작업이 어렵고 일 LNG 기화량이 2.0 % 내외가 되어 보다 고효율의 탱크가 요구되어 진다. 본 연구에서는 진공과 단열재를 분리하여 내외탱크에 고진공을 적용하고 외부 탱크에 우레탄폼을 가설시킨 탱크 단열 방식을 새로이 고안하여 열해석을 수행하였다. 해석결과 본 개발 탱크는 진공도가 $10^{-3}Torr$ 이하일 때 일 기화량이 0.03 % 이하로 매우 적게 유지될 수 있고, $10^{-4}Torr$ 이하가 되면 일 기화량이 0.11 %가 되었다. 진공이 파괴되는 경우에도 현재 진공펄라이트 단열은 일 4.9 %의 증발이 발생하나, 새 고안 탱크는 일 증발율이 4.12 %가 되는 매우 효율이 높고 안전한 LNG 탱크 단열방식이 되었다.

초고속 비행체용 소모성 터빈엔진 사전연구 (Prestudy on Expendable Turbine Engine for High-Speed Vehicle)

  • 김유일;황기영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.629-634
    • /
    • 2011
  • 초고속 비행체에 적용 가능한 소모성 터빈엔진 개발을 위한 사전연구를 수행하였다. 엔진 요구도 및 설계점 결정을 위한 가상 운용임무형상을 선정하고, 유사급 엔진과 참고문헌 등을 통해 확보된 데이터를 활용하여 설계점 해석을 수행하였는데, 해면고도, 마하수 1.2 조건에서 터빈입구온도 3,600R에 대한 설계점 계산결과, 비추력 2599.4 ft/s, 비연료소모율 1.483 lb/($lb^*h$)이 예측되었다. 설계점 계산결과를 기준으로 두 가지 임무형상에 대한 엔진 성능해석결과, 엔진 최대 순추력을 결정하는 설계변수는 천음속 및 낮은 초음속영역에서는 터빈입구온도, 높은 초음속 영역에서는 압축기 출구온도임을 확인하였다. 이밖에도 단순, 저가, 경량의 엔진형상으로 축류형 다단압축기와 직류형 연소기, 1단 축류터빈, 고정 수축팽창 노즐이 적용된 단순터보제트엔진을 제시하였다.

  • PDF

초고속 비행체용 소모성 터빈엔진 사전연구 (Prestudy on Expendable Turbine Engine for High-Speed Vehicle)

  • 김유일;황기영
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.97-102
    • /
    • 2013
  • 초고속 비행체에 적용 가능한 소모성 터빈엔진 개발을 위한 사전연구를 수행하였다. 엔진 요구도 결정을 위한 가상 운용임무형상을 선정한 후, 유사급 엔진과 참고문헌 등을 통해 확보된 설계변수 값을 활용하여 설계점 해석을 수행하였는데, 해면고도, 마하수 1.2 조건에서 터빈입구온도 3,600 R에 대한 설계점 계산결과, 비추력 2,599.4 ft/s, 비연료소모율 1.483 lb/(lb*h)이 예측되었다. 두 가지 임무형상에 대한 엔진 성능해석결과로부터 엔진 최대 순추력을 결정하는 설계변수는 천음속 및 낮은 초음속영역에서는 터빈입구온도, 높은 초음속 영역에서는 압축기 출구온도임을 확인하였다. 이밖에도 단순, 저가, 경량의 터빈엔진형상으로 축류형 다단압축기와 직류형 연소기, 1단 축류터빈, 고정 수축팽창 노즐이 적용된 단순터보제트엔진을 제시하였다.

Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

  • Prasser, Horst-Michael;Bolesch, Christian;Cramer, Kerstin;Ito, Daisuke;Papadopoulos, Petros;Saxena, Abhishek;Zboray, Robert
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.847-858
    • /
    • 2016
  • An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring sub-channels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of $16{\times}64$ measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구 (Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater)

  • 박영재;김형대
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012)

  • 한화택;이대영;김사량;김현정;최종민;박준석;김수민
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.