• Title/Summary/Keyword: Annual heating loads

Search Result 32, Processing Time 0.028 seconds

Comparison on Heating & Cooling Loads Analysis in Buildings with Modified Bin Method (수정(修正)빈법(法)에 의한 건물(建物)의 기간(期間) 열부하(熱負荷) 해석(解析)에 관한 비교(比較) 연구(硏究))

  • Sohn, J.Y.;Yoon, D.W.;Yee, J.J.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.6
    • /
    • pp.675-685
    • /
    • 1988
  • The purpose of this paper is to present the fundamental information for setting up more accurate and easier heat loads analysis method by examing and comparing Modified Bin Method with Dynamic loads calculation and Extended Degree Day Method. For this comparison, monthly and annual loads calculation are performed in perimeter zones of model office building in Seoul by the above each Method. The results of Modified Bin Method are approximated to those of Dynamic loads calculation Method, and the correlations of the methods are specifically described in this paper.

  • PDF

Application of Passive Solar Systems for Office Buildings (사무소 건물을 위한 자연형 태양열 시스템의 응용)

  • Park, Jin-Seo;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • This study analyzed the performance of passive solar system for office building. A unit model of the passive solar system was proposed in order to predict its performance under varying parameters and Seoul weather date. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the passive solar system performance of office building was determined by the insolation and the outdoor air temperature. Also the passive solar system indicate 6.7~16.2% of annual average efficiency. In the comparison with other systems of the conventional wall, mass wall could reduce the heating loads of 7.1% and trombe wall could reduce heating loads of 11.5%. Through this study, performance of passive solar system for office building was verified by numerical method. Consequently, the passive solar system could operate an important role as the alternative for saving energy consumption of office building, and the additional studies should be made through the experimental method for the commercialization.

A study on the annual energy performance of apartment building with the equivalent U-value of envelope considering the effect of thermal bridges (공동주택 외피의 열교영향을 고려한 상당열관류율 및 연간 에너지소비성능 평가 연구)

  • Kim, Dong Su;Yoon, Jong Ho;Shin, U Cheul;Kwak, Hee Yul
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2012
  • The building envelope is important specially for saving energy consumption of residential buildings. but Apartment houses in Korea commonly have inside insulation system which have constantly arisen thermal bridges, the risk of heat loss, as a necessity. This study aims to evaluate integrated insulation performance according to the different shapes of external walls, adjacent to windows. The thermal performance analysis was carried out by Equivalent U-value and using the three-dimensional heat transfer computer simulation (TRISCO-RADCON), under nine different cases of comparing among three each of different bases(current standard model, 30percent energy saving model and 60percent energy saving model). The heating and the cooling load were also compared between two cases (standard U-value and Equivalent U-value) of three each of different bases, using the Building energy simulation which is based on DOE-2.1 analysis. As results, it turns out that if the Equivalent U-value is considered on the envelope analysis, the heat flow loss will be increasing more than the standard U-value, and if heat insulation property of the residential building reinforced rather than current, the rate of influences on the thermal bridges would be extremely expanded. In addition, it is shown that annual heating loads of the apartment house with applied Equivalent U-value substantially increased by more than 15 percent compared to those with the existing U-value, but annual cooling loads were negligibly affected.

Comparative of Energy-Saving by Green Roof Type on Urban Office Building (도심 오피스건물의 옥상녹화 조성 유형별 건물에너지 절감 비교 연구)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Joo, Chang-Hun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1437-1446
    • /
    • 2014
  • This study, the urban energy used office building green roof type composition of the target by analyze building energy reductions. Green roof is total 6 types(type A~F) were selected, EnergyPlus the energy simulation programs were used. Top floor of green roof types evaluation, the reduction of the cooling peak load type E(1.26%), type D(1.30%), type C(1.37%), type B(1.45%), type F(1.49%), and heating peak load is type D(1.32%), type E(1.40%), type C(1.47%), type F(1.69%), type B(2.13%) order. Annual cooling load of heating load is reduced more than about 1% effect. The heating load reduction ratio for a maximum of 9% respectively. Cooling peak load of the building energy performance evaluation of type F > type B > type C > type D > type E in the order and in the case of peak loads heating type B > type F > type D > type E>type C order. Annual total energy use reduction of 1.07 to 1.22% and earn, type B in the best good. In primary energy use reductions in the presence of a green roof were in the 4249~4876 kWh/yr. Annual $CO_2$ emissions reductions of unapplied type A were analyzed on average 469.78 kg.

Analysis of Performance Changes in Ground source Heat Pump and Air Source Heat Pump According to Global Warming (지구온난화에 따른 지열히트펌프와 공기열히트펌프의 성능 변화 분석)

  • Jin Yeong Seo;Se Hyeon Ham;Dongchan Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.8-17
    • /
    • 2023
  • The air temperature is gradually increasing owing to global warming, especially in summer, therefore, the performance of an air source heat pump (ASHP) is expected to be decreased. Accordingly, the performance gap between the ASHP and ground source heat pump (GSHP) should be increased, however, the quantitative comparison has not been yet investigated. In this study, impact of global warming on the performance of the ASHP and GSHP is investigated based on the climate data for 1930, 1980, and 2030. The coefficient of performance (COP) as well as annual power consumption of the ASHP and GSHP are compared and analyzed. In the case of COP, the COP of GSHP hardly changes over the years owing to the constant ground temperature, while that of ASHP decreases by 3.7% for cooling and increases by 0.71% for heating. In the case of annual power consumption, the cooling and heating power consumption of GSHP increases by 12.69% and decreases by 15.58%, respectively, over the year owing to the changes in heating and cooling loads. As for the ASHP, the cooling and heating power consumption increases by 16.64% and decreases by 17.8%, respectively. For a more accurate comparison, power consumption ratio is introduced and shows that total annual power consumption of the GSHP to ASHP decreased from 68% in 1930 to 65% in 2030. Therefore, as global warming accelerates, the effect of reducing power consumption by using GSHP compared to ASHP is expected to be increasing.

Building Load Models for Hotels in Korea (국내 호텔 건물의 에너지 부하 모델)

  • Park, Hwa-Choon;Chung, Mo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.48-57
    • /
    • 2009
  • Energy demands for hotels in Korea are surveyed and statistically analyzed to develop calculation models for a simulation. Daily energy loads of 16 hotels located in Seoul, Busan, Daegu, Inchon, and Daejon are analyzed based on energy log sheets. Detailed hourly loads are field measured for 3 hotels that are carefully selected among the surveyed. One of the salient features for energy consumption by hotels is their weekly periodicity. Relatively large values of deviations are observed for both heat and electricity loads through the country. The mains factors are: location, hotel grade (luxuriousness) and insulation. Detailed quantitative information such are annual average, daily variation, and hourly patterns are provided.

Study on the Optimum Design of a Heat Pump System Using Solar and Ground Heat (태양열 및 지중열원을 이용한 히트펌프 시스템의 최적이용법에 관한 연구)

  • Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.509-514
    • /
    • 2012
  • In this research, a heat pump system with a heat source network is suggested which utilizes solar heat and ground heat as heat source for cooling and heating. This paper describes the summary of the suggested system and the results of the annual energy simulation. The heating and cooling loads, the electric consumption and the COP were calculated by TRNSYS 16 and evaluated in the cases of different local conditions and different system compositions. In the results, the superiority of the suggested system has been quantitatively evaluated comparing with the conventional heat pump system using one heat source. Furthermore, it was more significant in cold climate, in which the heating COP was 146% increased compared the air source heat pump system, than it in subtropical climate, 119% increased.

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.

Comparison Analysis of Cooling and Heating Demand by Building Type and Region using ECO2 and TRNSYS (건물유형 및 지역조건에 따른 ECO2 및 TRNSYS의 냉난방부하 비교분석)

  • Dongjin Park;Hyunjae Lee;Jinhwan Oh;Youngsik Kwon;Jaekwang Yang;Yujin Nam
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • In Korea, it is also mandatory for most buildings to receive energy efficiency rating certification from 2020 for the purpose of reducing greenhouse gas emissions and expanding green buildings. However, the issue of the accuracy of the ECO2 program continues to be raised, and comparisons have been made with dynamic energy analysis programs in a single type of building according to a single area. However, comparisons between multiple building types and multiple areas are insufficient. Therefore, in this study, cooling and heating loads according to multiple building types and multiple areas were analyzed through ECO2 and TRNSYS programs. The regions were supposed to be Seoul, Daejeon, Gwangju, and Busan and the building types were supposed to be office buildings and apartment houses. The annual average building load values from ECO2 were higher than those from TRNSYS. Among residential buildings across the four regions, the largest discrepancy was 41.4% in Seoul. Conversely, for commercial buildings, the most significant difference in annual average loads was noted in Gwangju, at 37.9%.

Performance Simulation of Ground-Coupled Heat Pump(GCHP) System for a Detached House (단독주택 적용 지열 히트펌프 시스템의 성능 분석)

  • Sohn, Byong-Hu;Choi, Jong-Min;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.392-399
    • /
    • 2011
  • Ground-coupled heat pump(GCHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some work related to performance evaluation of GCHP systems for commercial buildings has been done, relatively little has been reported on the residential applications. The aim of this study is to evaluate the cooling and heating performances of a vertical GCHP system applied to an artificial detached house($117\;m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, borehole diameter, and ground thermal properties, etc. The cooling and heating performance simulation of the system was conducted with different prediction times of 8760 hours and 240 months. The performance characteristics including seasonal system COP, average annual power consumption, and temperature variations related to ground heat exchanger were calculated and compared.