• Title/Summary/Keyword: Annual fuel consumption

Search Result 45, Processing Time 0.028 seconds

Determination of Atmospheric Lead in Suwon City (수원지역의 대기 중 Pb의 농도 결정)

  • Lee, Tae-Jung;Kim, Seoun-Cheon;Kim, Dong-Sool
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.535-542
    • /
    • 1995
  • Monitoring of lead concentration in the ambient alt was performed in Kyung Hee University-Suwon Campus over a period of 5 year from November 1989 to September 1994 using a cascade impactor having 9 size stages. Lead level was analyzed by x-ray fluorescence. The lead levels have been extensively examined to identify annual trends, seasonal variations, and size distribution of lead concentration. Even though consumption of leaded gasoline has been decreased, the levels have not significantly changed during the sampling period. Probably other sources like fossil fuel emission and refuse incinerator will be potential contributors. The seasonal variation showed that Pb concentration significantly increased in the winter season and decreased in the summer season. The size distributions of Pb were observed to be unimodal distribution of the 1.1~2.1 $mu extrm{m}$ sixte ranges in the winter and 0.65~1.1 ${\mu}{\textrm}{m}$ in the summer.

  • PDF

Determination of Atmospheric Lead in Suwon City (수원지역의 대기 중 Pb의 농도 결정)

  • Lee, Tae-Jung;Kim, Seoun-Cheon;Kim, Dong-Sool
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.149-149
    • /
    • 1995
  • Monitoring of lead concentration in the ambient alt was performed in Kyung Hee University-Suwon Campus over a period of 5 year from November 1989 to September 1994 using a cascade impactor having 9 size stages. Lead level was analyzed by x-ray fluorescence. The lead levels have been extensively examined to identify annual trends, seasonal variations, and size distribution of lead concentration. Even though consumption of leaded gasoline has been decreased, the levels have not significantly changed during the sampling period. Probably other sources like fossil fuel emission and refuse incinerator will be potential contributors. The seasonal variation showed that Pb concentration significantly increased in the winter season and decreased in the summer season. The size distributions of Pb were observed to be unimodal distribution of the 1.1∼2.1 $mu extrm{m}$ sixte ranges in the winter and 0.65∼1.1 ㎛ in the summer.

Economical Analysis of a Small Capacity Heat Pump utilizing Heat Sources of Air, Geothermal and Underground Water Tank using Dynamic Simulation (동특성 시뮬레이션을 이용한 공기, 지열 및 지하 저수조 열원 소형 열펌프의 경제성 분석)

  • Yang, Chul-Ho;Kim, Youngil;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Due to reinforcement of international environment regulation and high oil prices, interest in renewable energy is growing. Countries participating in UNFCCC are continuously putting efforts in reducing greenhouse gas after enforcing Kyoto Protocol into effect on Feb, 2005. Energy used in buildings, which relies heavily on fossil fuel accounts for about 24% of total energy consumption. In this study, air, geothermal and water source heat pump systems for an 322 $m^2$ auditorium in an office building is simulated using TRNSYS version 17 for comparing energy consumptions. The results show that energy consumptions of air, geothermal and water source heat pumps are 14,485, 10,249, and 10,405 kWh, respectively. Annual equal payments which consider both initial and running costs become 5,734,521, 6,403,257 and 5,596,058 Won. Thus, water source heat pump is the best economical choice.

Function of Home Energy Savings and Carbon Emission Reduction by Urban Vegetation- Case of Chuncheon- (도시식생의 주택에너지절약 및 탄소배출저감 기능 -춘천시를 대상으로-)

  • 조현길;서옥하;한갑수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.104-117
    • /
    • 1998
  • Rising concern about climate change has evoked interest in the potential for urban vegetation to help reduce the level of atmospheric CO\sub 2\, a major heat-trapping gas. This study quantified the functio of home energy savings and carbon emission reduction by shading, evapotranspiration and windspeed reduction of urban vegetatioin in Chuncheon. Tree and shrub cover averaged approximately 13% in residential land. The effects of shading, evapotranspiration and windspeed reduction annually saved heating energy by 2.2% and cooling energy by 8.8%. The heating and cooling energy savings reduced carbon emissions by 3.0% annually. These avoided emissions equaled the amount of carbon emitted annually from fossil fuel consumption by a population of about 1,230. Carbon emission reduction per residential building was 55kg for detached buildings and 872 kg for multifamily buildings. Urban vegetation annually decreased heating and cooling energy cost by ₩1.1 billions, which were equivalent to annual savings of ₩10,000 savings and carbon emission reduction due to tree plantings in the wrong locations, while windspeed reduction had a great effect. Plantings fo large trees close to the west and east wall of buildings, full tree plantings on the north, and avoidance of shade-tree plantings or selection of solar-friendlytrees on the south were recommended to improve the function of building energy savings and carbon emission reduction by urban vegetation.

  • PDF

A Review of Technology Development Trend for Hydrogen and Syngas Production with Coke Oven Gas (코크스 오븐 가스(COG)를 이용한 수소 및 합성가스 제조 기술 개발 동향 분석)

  • Choi, Jong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1247-1260
    • /
    • 2022
  • The steel industry accounts for about 5% of the total annual global energy consumption and more than 6% of the total anthropogenic carbon dioxide emissions. Therefore, there is a need to increase energy efficiency and reduce greenhouse gas emissions in these industries. The utilization of coke oven gas, a byproduct of the coke plant, is one of the main ways to achieve this goal. Coke oven gas used as a fuel in many steelmaking process is a hydrogen-rich gas with high energy potential, but it is commonly used as a heat source and is even released directly into the air after combustion reactions. In order to solve such resource waste and energy inefficiency, several alternatives have recently been proposed, such as separating and refining hydrogen directly from coke oven gas or converting it to syngas. Therefore, in this study, recent research trends on the separation and purification of hydrogen from coke oven gas and the production of syngas were introduced.

A Study on the Optimum Application Method of Solar Thermal System to reduce Thermal Load and Carbon Emission in Apartment Building (공동주택의 열부하 및 탄소배출량 저감을 위한 태양열시스템의 최적 적용 방안 연구)

  • Yoon, Jong-Ho;Sim, Se-Ra;Shin, U-Cheul;Baek, Nam-Chun;Kwak, Hee-Yul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.135-142
    • /
    • 2011
  • Architectural market in the world is trying to develop Zero Carbon Buildng that doesn"t use fossil fuel. Residential building that thermal load such as heating and domestic hot water is over 70% in energy consumption is easy to make Zero Carbon Building compared with office building that is mainly electric load. So, As a preliminary for analyzing the effect of Solar thermal system in the building, an annual energy consumption of residential building and total heat loads are calculated. Based on this result, three alternatives of solar thermal system for hot water and heating are applied in the building while installation area is increasing. Solar thermal system is applied on balcony and roof of apartment building as the way to reduce thermal load. In the first case that solar thermal system for hot water is applied on the balcony, optimum installation area is $56m^2$. And you could install $40m^2$ of this system in the roof that angle is $30^{\circ}$. In the second case of solar thermal system for heating and hot water, you can install $40m^2$ on the roof. As a result of economic evaluation, the most economical application method is to install $40m^2$ of solar thermal system for only hot water on the roof of the building. At that time, you can payback the initial investing cost within 10 years. And carbon emission of this method can be reduced until about 4 ton per year.

Effects of Urban Greenspace on Improving Atmospheric Environment - Focusing on Jung-gu in Seoul - (도시녹지의 대기환경개선 효과 - 서울시 중구를 중심으로 -)

  • 조현길;조용현;안태원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.83-90
    • /
    • 2003
  • This study explored effects of urban greenspace on improving atmospheric environment, which is concerned with $CO_2$, SO$_2$ and NO$_2$ uptake, and with reduction of summer air temperatures. The site of this study was focused on Jung-gu in Seoul. Tree density and cover were 1.1 trees/100 $m^2$ and 12.5% respectively for the study area except forest lands. Atmospheric purification by greenspace was associated with changes in tree cover per unit area of each land use type. The mean $CO_2$ storage by woody plants was 19.4t/ha, and annual uptake averaged 2.2t/ha/yr for $CO_2$, 1.9kg/ha/yr for SO$_2$ and 5.0kg/ha/yr for NO$_2$. Entire tree plantings in the study area played a significant role by annually offsetting $CO_2$ emissions of about 1,830t from fossil fuel consumption by 330 persons, SO$_2$ emissions of 1,620kg by 1,080 persons, and NO$_2$ emissions of 4,230kg by 450 persons. The summer air temperature was 3.6$^{\circ}C$ cooler at a location with 54% cover of woody plants and 4.5$^{\circ}C$ cooler at a forest site with 100% cover, compared to a place with no planting. A 10% increase of woody plant cover was estimated to decrease summer air temperature by approximately 0.6$^{\circ}C$ until a certain level of canopy cover. Analyzing data from the Automatic Weather Stations in Seoul revealed that increasing tree cover decreased mean air temperature for the summer season (Jun~Aug) in a nonlinear function. Woody plant cover was the best predictive variable of summer temperature reduction. The results from this study are expected to be useful in emphasizing the environmental benefits and importance of urban greenspace enlargement, and in urging the necessity for planting and management budgets.

Measurement of Carbon Concentration and Dissolution Ratio in Molten Steel by the Mixing Conditions of Carbon Materials Using Coffee Grounds (커피박을 활용한 탄재 혼합 조건에 따른 용강 내 탄소의 농도 및 용해 효율 측정)

  • Kim, Gyu-Wan;Ryu, Geun-Yong;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • Reduction of CO2 emissions is an important issue in the steel industry, and the research on carbon materials that can partially replace cokes is necessary to reduce CO2 emissions. Meanwhile, the biomass fuel contains some fixed carbon, and the carbon content in the biomass can be increased by torrefaction. As one of the biomass fuels, coffee grounds contains about 55 mass% of carbon, and its about 270,000 tons are landfilled and incinerated annually in Korea. In addition, research on the recycling process due to the increase in annual coffee consumption is required. In this study, the effect of temperature on the concentration of fixed carbon in coffee grounds was investigated during torrefaction. Moreover, the effects of mixing ratio of torrefied coffee grounds with cokes on the carbon concentration and dissolution efficiency in the metal sample were investigated.

Comparison of Greenhouse Gas Emission from Construction Equipment by Tier 2 and Tier 3 Methodologies (건설기계의 Tier 2와 Tier 3 방법론에 의한 온실가스 배출량 비교)

  • Shin, Yong Il;Kim, Jeong;Kim, Pil Su;Chung, Chan Kyo;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Recently, the operation of construction equipments have increased by many construction project. So a respectable amount of greenhouse gas is expected from construction equipments. But the greenhouse gas emissions from construction equipment have been high uncertainty due investigation of a lack of activity data and emission factors in Korea. In this study, annual greenhouse gas emissions from construction equipment are estimated by IPCC's Tier 2 and Tier 3 method. These methods require emission factors, fuel consumption, average kilowatts and operating hours. As the results, the nationwide emission from construction equipments by Tier 2 and Tier 3 are calculated as $21,784kton-CO_2eq/year$ and $22,811kton-CO_2eq/year$ in 2008.

Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel (한국의 산림바이오매스에너지 중장기 수요-공급전망과 화석연료 대체효과 분석)

  • Lee, Seung-Rok;Han, Hee;Chang, Yoon-Seong;Jeong, Hanseob;Lee, Soo Min;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • This study analyzed the anticipated supply-and-demand of forest biomass energy (through wood pellets) until 2050, in South Korea. Comparing the utilization rates of forest resources of five countries (United Kingdom, Germany, Finland, Japan, and S. Korea), it was found that S. Korea does not nearly utilize its forest resources for energy purposes. The total demand for wood pellets in S. Korea (based on a power generation efficiency of 38%) was predicted to be 3,629 and 4,371 thousand tons in 2034 and 2050, respectively. The anticipated total wood pellet power generation ratio to target power consumption is 1.13% (5,745 GWh), 1.17% (6,336 GWh), and 1.25% (7,631 GWh) in 2020, 2030, and 2050, respectively. Low value-added forest residues left unattended in forests are called "Unused Forest Biomass" in S. Korea. From the analysis, the total annual potential amount of raw material, sustainably collectible amount, and available amount of wood pellet in 2050 were estimated to be 6,877, 4,814, and 3,370 thousand tons, respectively. The rate of contribution to Nationally Determined Contributions was up to 0.64%. Through this study, the authors found that forest biomass energy will contribute to a carbon neutral society in the near future at the national level.