• Title/Summary/Keyword: Annual energy demand

Search Result 92, Processing Time 0.025 seconds

A Study on Analysis for Energy Demand of the Heating, Cooling and Lighting in Office Building with Transparent Thin-film a-Si BIPV Window (투광형 박막 BIPV 창호 적용에 따른 냉난방 및 조명 부하 저감에 관한 연구)

  • Yoon, Jong-Ho;An, Young-Sub;Park, Jang-Woo;Kim, Bit-Na
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.91-96
    • /
    • 2013
  • The purpose of this study was to analyze the annual energy demand including heating, cooling and lighting according to kind of windows with transparent thin-film a-Si Building Integrated Photovoltaic(a-Si BIPV) for office building. The analysis results of the annual energy demand indicated that the a-si BIPV window was reduced by 8.4% than the clear gazing window. The base model A was combinate with a-Si BIPV window area of 67% and clear window area of 33% among the total exterior area. The model B is to be applied with low-e clear glass instead of clear glass of the base model A. The model B was reduced to annual energy demand of 1% more than the model A. Therefore, By using a-si BIPV solar module, the cooling energy demand can be reduced by 53%(3.4MWh) and the heating energy demand can be increase by 58%(2.4MWh) than clear glazing window in office building. Also, Model C applied to the high efficient lighting device to the model B was reduced to annual energy demand of 14.4% more than the Model D applied to the high efficient lighting device to the model A. The Model E applied with daylight dimming control system to the Model C was reduced to annual energy demand of 5.9% more than Model C.

Heating and Cooling Energy Demand Analysis of Standard Rural House Models (농어촌 주택 표준모델의 냉난방에너지요구량 분석)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3307-3314
    • /
    • 2012
  • The annual energy demand of the standard rural house models was analyzed using the DesignBuilder. Indoor temperature set-point, U-value of outer wall, type of window, and degree of ventilation were selected as simulation parameters. In all the simulation cases, heating energy demand was higher than cooling energy demand regardless of the building size. When the lower U-value of the outer wall was applied to account for the thicker insulation layer, heating energy demand was decreased while cooling energy demand was increased. However, it is better to reduce the area of outer wall which is directly exposed to outdoor air because reducing the U-value of the outer wall is not effective in decreasing heating energy demand. Among the four different window types, the double skin window is most favorable because heating energy demand is the lowest. For a fixed infiltration rate, higher ventilation rate resulted in an increased heating energy demand and had minor impact on cooling energy demand. As long as the indoor air quality is acceptable, lower ventilation rate is favorable to reduce the annual energy demand.

Comparison of Energy Demand Characteristics for Hotel, Hospital, and Office Buildings in Korea (호텔, 병원, 업무용 건물의 에너지 부하 특성 비교)

  • Park, Hwa-Choon;Chung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.553-558
    • /
    • 2009
  • Energy demand characteristics of hotel, hospital, and office building are compared to provide guidelines for combining building in community energy system design. The annual, monthly, and daily energy demand patterns for electricity, heating, hot water and cooling are qualitatively compared and important features are delineated based on the energy demand models. Key statistical values such as the mean, the maximum are also provided. Important features of the hourly demand patterns are summarized for weekdays and weekends. Substantial variations in both magnitudes and patterns are observed among the 3 building types and smart grouping or combination of building type and size is essential for a successive energy supply.

Prediction on Variation of Building Heating and Cooling Energy Demand According to the Climate Change Impacts in Korea (우리나라의 기후 변화 영향에 의한 건물 냉난방에너지 수요량 변화의 예측)

  • Kim, Ji-Hye;Kim, Eui-Jong;Seo, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.789-794
    • /
    • 2006
  • The potential impacts of climate change on heating and cooling energy demand were investigated by means of transient building energy simulations and hourly weather data scenarios for Inchon. Future trends for the 21 st century was assessed based oil climate change scenarios with 7 global climate models(GCMs), We constructed hourly weather data from monthly temperatures and total incident solar radiation ($W/m^2$) and then simulated heating and cooling load by Trnsys 16 for Inchon. For 2004-2080, the selected scenarios made by IPCC foresaw a $3.7-5.8^{\circ}C$rise in mean annual air temperature. In 2004-2080, the annual cooling load for a apartment with internal heat gains increased by 75-165% while the heating load fell by 52-71%. Our analysis showed widely varying shifts in future energy demand depending on the season. Heating costs will significantly decrease whereas more expensive electrical energy will be needed of air conditioning during the summer.

  • PDF

A Study on Standard Heating and Cooling Load according to Design Factors using Prototypical Load Model (표준부하모델을 이용한 설계 변수에 따른 표준부하량 분석)

  • Kim, Kwonye;Bae, Sangmu;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Before newly-built building and building remodeling, it is important to predict and analyze building energy performance through energy simulation programs. Nevertheless, simulation results widely vary depending on individual user experience and input values. Therefore, this study uses prototypical building model, a versatile tool in building energy modeling, simulation and research for researchers and policy-makers, and ASHRAE standards. Then, it analyzed the changes in design type (roof type, number of floors) for the base case. As the result, it was found that the gap of annual energy demand per between them is maximally 9.1%.

Optimal Capacity Determination Method of Battery Energy Storage System for Demand Management of Electricity Customer (수용가 수요관리용 전지전력저장시스템의 최적용량 산정방법)

  • Cho, Kyeong-Hee;Kim, Seul-Ki;Kim, Eung-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The paper proposes an optimal sizing method of a customer's battery energy storage system (BESS) which aims at managing the electricity demand of the customer to minimize electricity cost under the time of use(TOU) pricing. Peak load limit of the customer and charging and discharging schedules of the BESS are optimized on annual basis to minimize annual electricity cost, which consists of peak load related basic cost and actual usage cost. The optimal scheduling is used to assess the maximum cost savings for all sets of candidate capacities of BESS. An optimal size of BESS is determined from the cost saving curves via capacity of BESS. Case study uses real data from an apartment-type factory customer and shows how the proposed method can be employed to optimally design the size of BESS for customer demand management.

Impact of future climate change on UK building performance

  • Amoako-Attah, Joseph;B-Jahromi, Ali
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.203-227
    • /
    • 2013
  • Global demand for dwelling energy and implications of changing climatic conditions on buildings confront the built environment to build sustainable dwellings. This study investigates the variability of future climatic conditions on newly built detached dwellings in the UK. Series of energy modelling and simulations are performed on ten detached houses to evaluate and predict the impact of varying future climatic patterns on five building performance indicators. The study identifies and quantifies a consistent declining trend of building performance which is in consonance with current scientific knowledge of annual temperature change prediction in relations to long term climatic variation. The average percentage decrease for the annual energy consumption was predicted to be 2.80, 6.60 and 10.56 for 2020s, 2050s and 2080s time lines respectively. A similar declining trend in the case of annual natural gas consumption was 4.24, 9.98 and 16.1, and that for building emission rate and heating demand were 2.27, 5.49 and 8.72 and 7.82, 18.43 and 29.46 respectively. The study further analyse future heating and cooling demands of the three warmest months of the year and ascertain future variance in relative humidity and indoor temperature which might necessitate the use of room cooling systems to provide thermal comfort.

A Study on the Implementation Issues for Demand-side Management of Energy Suppliers (에너지공급자 수요관리 개선방안 연구)

  • Kim, Hyeong-Jung;Son, Hag-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1566-1574
    • /
    • 2010
  • This paper presents an in-depth review for current status for demand-side management (DSM) investment of energy supplier and an useful prospect on the introduction of Energy Efficiency Resource Standards (EERS). According to the Article 9 of Rational Energy Utilization Act, Energy suppliers-Korea Electric Power Corporation (KEPCO), Korea Gas Corporation (KOGAS) and Korea District Heat Corporation (KDHC) prescribed by Presidential Decree-must establish and implement annual demand-side management investment plan to improve energy efficiency in production, transformation, transportation, storage and usage of corresponding energy and to reduce demand and green house gas emissions. In this paper, we examine the DSM programs of energy suppliers and the results of DSM investment in 2009, then we propose a reasonable solution for the development of DSM investment. Furthermore, in order to compare our situation, the case studies were conducted on EERS issues in England, Italy, France and U.S, such as establishing the energy saving target, selecting the target energy supplier, and penalty and incentive mechanisms. Throughout the case studies, this paper suggests the directions to the DSM investment planning of energy suppliers and the major issues to prepare EERS in Korea.

A Comparative Analysis of Regional Energy Demand and Production in terms of Energy Sharing through PV/T and PV (PV/T와 PV 시설을 통한 열 공유 측면의 지역별에너지 수요량과 생산량 비교분석 연구)

  • Kwon, Hyuk-Min;Lee, Tae-Kyu;Kim, Jung-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.380-387
    • /
    • 2019
  • In recent years, solar energy PV/T research has been actively pursued by complementing solar heat acquisition and solar energy acquisition, and PV/T energy efficiency is generally excellent. In this study, the annual energy demand is calculated based on one building, and the energy production when PV / T installed on the roof and the energy production when PV are installed are compared and analyzed by simulation case. In conclusion, Busan which is the southern province in Korea, has the largest amount of energy generation, and introducing the concept of sharing surplus energy, excluding energy demand from generation. As a result, it can be supplied up to 3.3 households.

A study on analysis of energy consumption of Detached house by U-value and SCs of windows and Building Orientation (창의 종류 및 차폐계수 변화와 건물 향에 따른 단독주택의 에너지요구량 분석)

  • Jeong, Su-Hui;Park, Hyo-Sun;Lee, Byung-Yun
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.96-103
    • /
    • 2012
  • Annual energy consumption in detached houses are affected mainly by thermal performance of envelope. In particular the performance of glasses are critical due to global wanning and climatic change. Therefore, this research analyzes annual consumption of cooling and heating energy with various combination of U-value, shading coefficient and building orientation. The simulation results shows that shading coefficient of glazing contributes to the changes of proportion of heating and cooling energy demand and the optimized shading coefficient for minimizing energy consumption varies with buildings orientation.