• Title/Summary/Keyword: Annual concentration

Search Result 661, Processing Time 0.029 seconds

DETERMINATION OF TROPHIC STATE AND TESTING OF PHOSPHORUS MODEL IN THE KI HEUNG RESERVOIR

  • Lee, Do-Hun;Oh, Jong-Min
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.199-208
    • /
    • 2000
  • The relationship between areal total phosphorus(TP) and areal hydraulic loading was identified and used as defining the trophic state of the reservoir. And three simple, conceptual TP models were tested against the measured in-reservoir TP concentration. The analyses were based on water quality data measured in the Ki Heung reservoir for two years. The results showed that Ki Heung reservoir has undergone eutrophic state, and Dillon's and Vollenweider's TP models were in close agreement with the measured annual mean TP concentration. However, the OECD's model understimated the measured annual mean TP concentration in the Ki Heung reservor. A discussion is given for the hypothetical application of TP loading plot which might be useful for establishing the TP control program in the resavoirs/lakes.

  • PDF

Characteristics of Changes in DOC Concentration according to Concentrations of Organic Matter and Suspended Solids in the Nakdong River (낙동강에서 유기오염 및 SS 농도 변화에 따른 DOC 농도 변화의 특성)

  • Lee, Kyu-Yeol;Kim, Ju-Eon;Lee, Kwon-Chul;Lee, Kyung-Lak;Lee, In-Jung;Im, Tae-Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.540-550
    • /
    • 2013
  • Temporal increase of SS induces concentrations in various forms of organic matter including BOD, COD, TOC. Consequently, it causes hard to identify sources of water pollution during or after precipitation. The objective of this study is to investigate variations of DOC concentration caused by increase of flow and changes of external factors in river by comparing to SS concentration. In results, monitoring sites (e.g., Banbyeonchen) consisting of hard riverbed showed high correlation between SS and organic matters, except BOD. On the contrary, other sites (e.g., Naesungcheon) where riverbed consists of sand were found in a wide range of annual fluctuation in SS level, whereas these sites showed a narrow range in annual DOC fluctuation. In Gumhogang and Namgang, a lower correlation between SS and other factors was found most likely because of high concentration in organic matter. However, lower annual fluctuation values of DOC were observed in comparison to those of COD and TOC. Similar results were also confirmed in main river sites, Sangju and Mulgeum. In conclusion, DOC concentration is better indicator for monitoring organic matter which cannot be provided by BOD, COD, TOC in the Nakdong river basin.

Radon Concentration in Various Indoor Environment and Effective Dose by Inhabitants in Korea (국내 다양한 실내환경에서 라돈농도 및 거주자의 실효선량 평가)

  • Lee, Cheol-Min;Kim, Yoon-Shin;Roh, Young-Man;Kim, Ki-Youn;Jeon, Hyung-Jin;Kim, Jong-Cheol
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.264-275
    • /
    • 2007
  • The objective of this study was to offer basic and scientific data for decision-making of policy for improvement and management of radon, natural radiation gas, in Korea and to form the foundation of radon related international cooperation. Therefore, this study collected and re-analysed the articles on exposure of radon in various indoor environment in journals related environment in Korea since 1980 and estimated the annual exposure dose and effective dose by exposure of radon received by inhabitants in them. The highest pooled average radon concentration of $50.17{\pm}4.08\;Bq/m^3$ (95% CI : $42.17{\sim}58.17\;Bq/m^3$) was found in dwelling house among various indoor environment. All of pooled average radon concentration estimated in this study showed lower than the guideline concentration ($148\;Bq/m^3)$ of US EPA and the Korean Ministry of Environment. The annual effective dose received by inhabitants in various indoor environment was estimated 1.071 mSv/yr. That is equal to annual effective dose (1.0 mSv/yr) by exposure of radon estimated by UNSCEAR.

High Influential Factor of Cadmium and Lead Exposure in Outdoor Workers (옥외 근로자들의 카드뮴과 납 노출 영향요인)

  • Moon, Chan-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.163-173
    • /
    • 2020
  • Objectives: The study was evaluated exposure variation and daily absorption level of cadmium, lead concentration of ambient air of monthly data from 1999 to 2017 for main exposure factor in outdoor workers. Methods: Based on the monthly data from 'The annual report of air quality in Korea from 1999 to 2018' in 'Air Korea' website in the Korean Ministry of Environment. The monthly data of PM2.5, PM10, cadmium, lead concentration of ambient air were recalculated to average, minimum, and maximum. And these data were combined to Asian-dust exposure data from 'The annual report of Asian-dust·smog in 2017' of National Institute of Meteorological Sciences in Korea. Results: Geometric mean(minimum-maximum) concentration in ambient air of monthly data were 0.0017 (ND-0.2015) mg/㎥ in cadmium and 0.0467(ND-0.8554) mg/㎥ in Pb from 1999 to 2017. Both of Cd and Pb concentration in ambient air showed the highest concentration in January and the lowest in August among annual variation from 1999 to 2017. PM10 and PM2.5 level showed the highest in March(PM10) and February (PM2.5) the lowest in August both of PM10 and PM2.5. Discussion: Based on exposure data and prior reports, daily Cd absorption was estimated to 0.013(ND-1.511) mg/day from respiration and 1.89 mg/day from daily food(25.2 mg/day of daily Cd intake). In case of Pb, daily absorption was estimated to 0.350(ND-6.416) mg/day from respiration and 1.38-1.71 mg/day from daily food intake. Conclusion: Cd and Pb with Asian-dust have high influential factor to increase the Cd and Pb exposure at Winter and Spring season in outdoor workers.

A Study on the Correlation between the Volume of Indoor Space and the Measured Concentration of Indoor Radon (실내 체적과 라돈 농도와의 상관관계 연구)

  • Kang, Sung-A;Han, Dong-Hyun;Kim, Chong-Yeal
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.97-104
    • /
    • 2007
  • The corelation between the indoor volume and the measured radon concentration has been analyzed by comparing the radon concentration and the indoor volume of apartment rooms in Jeonju City. We also measured the annual exposure dose based on the variation in indoor radon concentration over time. To do this, we took 8 larger rooms and 8 smaller rooms of apartment, respectively, as a sample. The average volume of the larger rooms and that of the smaller rooms were $31.59\;m^3$ and $16.82\;m^3$, respectively. The average radon concentration of the larger rooms and that of the smaller rooms turned out to be $71.73\;Bq/m^3$ and $108.51\;Eq/m^3$, respectively. indicating that indoor volume is in inverse proportion to the radon concentration, i.e., the bigger the ratio of the surface area/volume, the higher the indoor radon concentration. From the measurement of the variation in indoor radon concentration over time fur a single day, the average intraday radon concentration variation was found to be about $46.8\;Bq/m^3$. The highest level of concentration ($114.5\;Bq/m^3$) was measured between 8 and 10 AM and the lowest level of concentration ($67.7\;Bq/m^3$) between 2 and 4 PM. The annual exposure dose turned out to be in the range of 0.3 mSv/yr to 2.16 mSv/yr, showing that the dose in some apartments exceeded 1.3 mSv/yr, the numerical value presented by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR).

One-Year Continuous Measurement of Outdoor Radon Progeny Concentration in Beijing Area

  • Zhang, Lei;Wang, Yunxiang;Guo, Qiuju
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.95-100
    • /
    • 2020
  • Background: Compared with reported data of radon concentration, data of radon progeny concentration is limited in general, especially in outdoor environment. Materials and Methods: To know both the level and the variation of radon progeny concentration in outdoor environment in Beijing area, one-year continuous measurement with a cycle of 60 minutes was carried out by a step-advanced filter (SAF) monitor for radon progeny measurement. The observation site was located in a park in Eastern Beijing area, and the observation period was from October 17, 2018 to September 29, 2019. Results and Discussion: The equivalent equilibrium concentration (EEC) of radon progeny varies from 0.7 to 19.1 Bq·m-3, with an annual average of 4.9 ± 2.7 Bq·m-3. A clear diurnal variation of EEC, higher in the early morning and lower in the late afternoon, is observed due to the high sensitivity of the SAF monitor. Conclusion: Vertical convection of atmospheric boundary layer is thought to be the main reason of this phenomenon. For annual variation, the lowest monthly average EEC appeared in April, while the highest appeared in November, which might attribute to the atmospheric stability in different seasons.

Estimation of the Effects of Air Pollutants on Tree Ring Growth in Black Pines (Pinus thunbergii)

  • Song, Young-Joo;Kim, Yoon-Dong;Choi, Kee-Ryong
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.109-113
    • /
    • 2009
  • Tree-ring width analysis has been used to assess the effects of air pollution on tree growth around industrial complexes. Our study was conducted to elucidate the effect of air pollutants on annual ring growth in black pines (Pinus thunbergii) of age 41$\sim$48 years around Ulsan Metropolitan City. The growth data were analyzed by multiple regression and the results are as follows: 1. The annual ring increment of black pines increased with tree age until age 40 years and then decreased gradually after age 40 years. 2. The increment of annual ring width of black pines was affected more by precipitation and evapotranspiration than air temperature. An annual ring decline appeared in the years 1968$\sim$1983, when annual ring indices below zero were observed. Decreased annual ring growth during this period may have been due to air pollution. 3. The heavy metal with the strongest effect on annual ring growth of black pines in the experimental stand was lead (Pb). The concentration of lead in the stand was estimated as over 6 ppm. 4. The technique of tree-ring width analysis may be useful for estimation of the extent of pollution in forest areas near industrial complexes.

Air Quality Improvement Scenario for China during the 13th Five-Year Plan Period

  • Tang, Qian;Lei, Yu;Chen, Xiaojun;Xue, Wenbo
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2017
  • China is suffering from severe air pollution especially fine $PM_{2.5}$ pollution. In 2015, the annual average $PM_{2.5}$ concentration of the 338 municipal cities was $50{\mu}g/m^3$, 78% cities at or above the prefectural level failed to comply with the $PM_{2.5}$ concentration standards. The $13^{th}$ Five-Year Plan for National Economic and Social Development set the goal that the annual average concentration of $PM_{2.5}$ in the municipal cities which failed to attain the ambient air quality standards shall be decreased by 18% by 2020 (CCCPC, 2016). In this study, an air pollution control scenario during the $13^{th}$ Five-Year Plan period was proposed and the $SO_2$, $NO_x$ and PM emission reductions in response to different measures in 31 provincial-level regions mainland China by 2020 were estimated. The air quality in the target year (2020) was simulated using the WRF-CMAQ model. The results showed that by 2020, the emissions of $SO_2$, $NO_x$ and primary PM in mainland China will be reduced by 4.19 million tons, 3.94 million tons and 4.41 million tons, a drop of 23%, 21% and 25% respectively compared with that in 2015, and the annual average concentration of $PM_{2.5}$ will decrease by 19%. Coal-fired power plant contributes the most pollutant emission reduction.

Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University (선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.

Cluster Analysis of PM10 Concentrations from Urban Air Monitoring Network in Korea during 2000 to 2005 (전국 도시대기 측정망의 2000~2005년 PM10 농도 군집분석)

  • Han, Ji-Hyun;Lee, Mee-Hye;Ghim, Young-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.300-309
    • /
    • 2008
  • Variations in PM10 concentration between 2000 and 2005 from 84 urban air monitoring stations operated by the government were analyzed. The K-means cluster analysis was attempted using annual average and the 99th percentile of daily averages as parameters. The results obtained by excluding Asian dust episode days were compared with those obtained by using all available data. In any cases, the cluster with the highest mean concentration was mostly composed of stations in Seoul and Gyeonggi. Annual average of the cluster with the highest mean concentration showed a distinct decreasing trend, but that excluding Asian dust episode days did not show such a trend. Without Asian dust episode days high concentrations of monthly averages in March and April were also not observed. The effect of Asian dust was more pronounced in the 99th percentile of daily averages. The 99th percentile of daily averages of the cluster with the highest mean concentration was the highest in June following downs in April and May.