• 제목/요약/키워드: Annual Heating & Cooling Load

검색결과 52건 처리시간 0.026초

Heating and Cooling Load of Building according to Atrium Layout

  • Jeong, Nam-Young;Lee, Ji-Young;Chae, Young Tae
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.29-36
    • /
    • 2016
  • Purpose: The purpose of this study is to present basic data which would be applied on the early stage of the architectural design. And that determines the introduction of the atrium by comparing and analysing the environmental performance of atrium building. Method: The building forms are classified into low storied building, middle storied building and high storied building. This study compares and analyses energy performance of the standard building without atrium and the atrium building which has one-side, two-side, three-side, four-side, and linear atrium by measuring of annual heating and cooling load with EnergyPlus. Result: As a result of the analysis of the relative annual heating and cooling load by building type, it is shown that the fluctuation of cooling load in low storied building is large because heat storage in atrium affects building, and the fluctuation of heating load in high storied building is large owing to the effect of external wall area of atrium which makes heat loss. Especially, it indicated the largest annual heating and cooling load in four-side atrium of low storied building, and in one-side atrium of high storied building.

창호의 단열성능에 따른 공동주택 냉난방 부하량 변화 (The Change of Heating and Cooling Load according to the Thermal Insulation Performance of Window for an Apartment House)

  • 송수빈;김영탁;윤성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.853-856
    • /
    • 2008
  • Windows have an great effect on annual building load because windows are the weakest parts of building envelope thermally. To reduce the consumption of building energy, the thermal performance of window has to be improved in first place. Therefore this research aims to make a quantitative analysis of the heating and cooling load according to the window thermal performance using the heat load simulation program. As a result of the simulation, annual heat load is down 38% according to the decrease of U-value of window, 1.00 W/$m^2K$. and annual heat load is up 10% according to the decrease of shading coefficient, 0.20. The annual load of the window with Low-E glass is 15% lower than the window with pair glass.

  • PDF

에너지 효율로 본 상업용 건물의 적정 창호에 관한 연구 (The optimal window system of office buildings considering energy efficiency)

  • 유호천;오영호;박승길
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.53-60
    • /
    • 2005
  • The purpose of this study is to improve energy efficiency of windows in office buildings through the evaluation of their heating, cooling and illumination load. Energy efficiency is influenced by window size which is determined at the early stage of building design. The process of this study is as follows. First, energy performance is analysed according to the various rates of windows through computer simulation (ECOTECT). Then, the annual heating, cooling and illuminating loads according to the different window sizes are compared one another. Results indicated that the optimal window size considering energy efficiency is 50% of the surface area. When the window size is 50% of the surface area, annual maintenance expense is also smallest. Since the cost of cooling is larger than that of heating, too low indoor air temperature in summer is unfavorable based on the reasonable annual maintenance expenses.

우리나라의 기후 변화 영향에 의한 건물 냉난방에너지 수요량 변화의 예측 (Prediction on Variation of Building Heating and Cooling Energy Demand According to the Climate Change Impacts in Korea)

  • 김지혜;김의종;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.789-794
    • /
    • 2006
  • The potential impacts of climate change on heating and cooling energy demand were investigated by means of transient building energy simulations and hourly weather data scenarios for Inchon. Future trends for the 21 st century was assessed based oil climate change scenarios with 7 global climate models(GCMs), We constructed hourly weather data from monthly temperatures and total incident solar radiation ($W/m^2$) and then simulated heating and cooling load by Trnsys 16 for Inchon. For 2004-2080, the selected scenarios made by IPCC foresaw a $3.7-5.8^{\circ}C$rise in mean annual air temperature. In 2004-2080, the annual cooling load for a apartment with internal heat gains increased by 75-165% while the heating load fell by 52-71%. Our analysis showed widely varying shifts in future energy demand depending on the season. Heating costs will significantly decrease whereas more expensive electrical energy will be needed of air conditioning during the summer.

  • PDF

열 차단 필름의 적용에 따른 냉난방 부하 분석에 관한 연구 (A Study on the Analysis of Heating and Cooling Load through Applying Window Film Insulation)

  • 김석현;조영흠
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.47-53
    • /
    • 2013
  • In order to reduce the energy consumption of the building, much effort is being made. The problems are that excessive solar radiation in summer and the heat loss in winter by the increase of window area. To prevent this problems, government limited the window area ratio or the performance of windows in new buildings. In order to reduce energy consumption of the existing buildings, the window film insulation is spotlight because the window film insulation was simple to installation. This study confirmed the performance of the window film insulation and affect to heating & cooling load of buildings. The impact of the window film insulation coating was confirmed by experiment. And this study confirmed the annual heating & cooling load by simulation. As a results, the surface temperature of coated window was higher than the surface temperature of existing window. The window film insulation was increased surface temperature of window. And this study confirmed that the increased surface temperature was slightly affected the room air temperature through experiment of the insulation box. The results of the heating and cooling load by simulation, this study confirmed that the case of coated window film insulation decreased cooling load in summer and increased heating load in winter. Also the annual total heating & cooling load was increased a little in the case of coated the window film insulation.

청소년 수련관의 열원설비 대안별 생애주기 비용에 관한 연구 (Analysis of Life Cycle Cost for Heat Source Equipments in Buildings for Adolescent Trainees)

  • 안창환;방승기;백용규
    • KIEAE Journal
    • /
    • 제5권3호
    • /
    • pp.25-31
    • /
    • 2005
  • Computer simulations were performed for Heating Ventilating and Air-Conditioning (HVAC) systems to figure out more efficient maintenance methods for the building used for adolescent trainees. This study aims at suggesting design alternatives for optimum operation and performing life cycle cost (LCC) for each alternative. First, the capacity of the heat source equipment was determined using annual maximum heating and cooling loads. Annual loads were calculated and applied to the alternative for the purpose of calculating annual energy cost. Second, several types of data were collected to predict energy cost. Finally, the pay back period for each alternative was calculated using total cost estimation during standard duration period. This study indicates that the absorption chiller that does not occupy most part of a mechanical room, and does not need much operation cost was most economical.

다항함수를 이용한 건물의 연간부하 예측 방법에 관한 연구 (Study on the Annual Building Load Predicting Method using a Polynomial Function)

  • 윤희원;최승혁;류형규
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.7-13
    • /
    • 2017
  • In order to use and manage the building energy efficiently, it is necessary to minimize building energy consumptions, and establish operation plans of various equipment. The maximum heating and cooling load calculation is an essential way in various equipment selections, and the annual building load calculation is used in forecasting & evaluating the LCC required for operation plan. In this study, noting that the annual building load changes depending on outside temperature around year, we propose a predicting method of annual building load. By using the $4^{th}$ polynomial function that have two double radix and a feature the $f(x)=a^4$ in x = 0 condition, we can calculate annual building load very easily only with the two result (maximum heating and cooling load) and a minimum parameters.

코어 위치와 종횡비 및 방위에 따른 건물 에너지 부하 분석 (An Analysis on Building Energy Load along Core Position, Area Ratio and Orientation)

  • 김진호;박우평;신승호;민준기;김동훈
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권1호
    • /
    • pp.15-19
    • /
    • 2013
  • In this Study, effect of core position, area ratio and orientation of building on energy load is examined using TRNSYS17. This parameters are major parameters of the conceptual design stage. Reference model is square floor plan($1,444m^2$), centered core and 29% core area ratio. As the results, without considering the building orientation, the annual heating load of central building with 1:1 area ratio is lowest ($10.33kWh/m^2yr$) and the annual cooling load of off-central building with 1:1 area ratio is lowest ($59.27kWh/m^2yr$). As area ratio is bigger, cooling load is lower and heating load is higher. But if we consider building orientation, orders of heating load and cooling load are changed for area ratio and orientation.

Window-to-Wall-Ratio for Energy Reduction in Early Design Stage of Residential Building

  • Lee, Myung Sik
    • Architectural research
    • /
    • 제19권4호
    • /
    • pp.89-94
    • /
    • 2017
  • In Korea, it is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to assess the optimal window-to-wall ratio of multi-rise residential units in the early design phase in Korea. The study analyzed the variation of annual heating and cooling energy load in two apartment prototype units located in Seoul city using different WWRs. The analysis was conducted using Autodesk Ecotect Analysis 2011 tool. The study found for total annual building load reductions WWR on the south and north face should be studied independently based on the room function. It also found reducing the WWR for bedrooms and windows on the northern façade resulted in reduced total annual building load.

연간 백분위 방식에 의한 온실 냉난방 설계기온의 분석 (Analysis of Outdoor Design Temperatures for Heating and Cooling Greenhouses Based on Annual Percentiles)

  • 남상운;신현호
    • 생물환경조절학회지
    • /
    • 제27권3호
    • /
    • pp.269-275
    • /
    • 2018
  • 온실 냉난방시스템 설계용 외부기상조건의 분석 기준을 설정하기 위하여 연간 백분위 방식에 의한 냉난방 설계기온을 분석하고, 기존의 계절 백분위 방식에 의한 설계기온과 비교 검토하였다. 우리나라 전 지역을 대상으로 현재 기상청에서 제공하는 기후평년값 기준 30년 간의 매 시각 기상자료를 분석에 사용하였다. 표준기상데이터의 이용이 제한적이기 때문에 전체 기상자료를 이용하여 매년 설계용 기상조건을 구하고, 전체 자료기간의 평균값을 분석에 사용하였다. 연간 백분위 방식으로 1년 기준 총 8,760시간의 백분위수 0.4%, 1%, 2%를 냉방 설계 외기온으로, 99.6%, 99%를 난방 설계 외기온으로 제시하였다. 연간 백분위 방식을 채택할 경우 계절 백분위 방식에 비하여 전체적으로 난방설계 외기온은 6.7~9.6% 상승하는 것으로 나타났으며, 냉방설계 외기온은 0.6~1.1% 하강하는 것으로 나타났다. 동일한 온실 조건에서 최대난방부하는 연간 백분위 방식을 채택할 경우 기존의 계절 백분위 방식에 비하여 약 3.0~3.6% 정도 감소하는 것으로 나타났고, 최대냉방부하에 미치는 영향은 미미한 것으로 분석되었다. 따라서 난방설계 외기온은 연간 백분위 방식으로의 변경에 대하여 고려할 필요가 있지만, 냉방설계 외기온은 두 방법 간의 차이가 거의 없으므로 아직까지 변경할 필요는 없는 것으로 판단된다. 전체적으로 현재의 계절 백분위 방식으로 분석한 설계 외기온을 사용하여도 큰 문제는 없을 것으로 생각되지만, 기후변화의 영향을 고려하여 주기적인 설계용 기상자료의 분석 및 설계기준의 개정이 필요하고, 현재의 기후평년값 기준연도가 바뀌는 2021년 이후에는 이 기간의 기상자료를 분석하여 새로운 설계기준으로 제공해야 할 것이므로, 그 때 연간 백분위 방식에 대한 전문가 그룹의 검토를 통하여 반영할 필요가 있을 것으로 판단된다.