• Title/Summary/Keyword: Annual Energy Yield

Search Result 28, Processing Time 0.024 seconds

Process Simulation and Economic Feasibility of Upgraded Biooil Production Plant from Sawdust (톱밥으로부터 생산되는 개질 바이오오일 생산공장의 공정모사 및 경제성 분석)

  • Oh, Chang-Ho;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.496-523
    • /
    • 2018
  • The objective of this study is to evaluate the economic feasibility of two fast pyrolysis and biooil upgrading (FPBU) plants including feed drying, fast pyrolysis by fluidized-bed, biooil recovery, hydro-processing for biooil upgrading, electricity generation, and wastewater treatment. The two FPBU plants are Case 1 of an FPBU plant with steam methane reforming (SMR) for $H_2$ generation (FPBU-HG, 20% yield), and Case 2 of an FPBU with external $H_2$ supply (FPBUEH, 25% yield). The process flow diagrams (PFDs) for the two plants were constructed, and the mass and energy balances were calculated, using a commercial process simulator (ASPEN Plus). A four-level economic potential approach (4-level EP) was used for techno-economic analysis (TEA) under the assumption of sawdust 100 t//d containing 40% water, 30% equity, capital expenditure equal to the equity, $H_2$ price of $1050/ton, and hydrocarbon yield from dried sawdust equal to 20 and 25 % for Case 1 and 2, respectively. TCI (total capital investment), TPC (total production cost), ASR (annual sales revenue), and MFSP (minimum fuel selling price) of Case 1 were $22.2 million, $3.98 million/yr, $4.64 million/yr, and $1.56/l, respectively. Those of Case 2 were $16.1 million, $5.20 million/yr, $5.55 million/yr, and $1.18/l, respectively. Both ROI (return on investment) and PBP (payback period) of Case 1(FPBU-HG) and Case 2(FPBU-EH) were the almost same. If the plant capacity increases into 1,500 t/d for Case 1 and Case 2, ROI would be improved into 15%/yr.

Studies on Dry Matter Yields , Chemical Composition and Net Energy Accumulation in Three Leading Temperate Grass Species I. Influence of meteorolgical factors on the dry matter productivity and net energy value under different cutting management (주요 북방형목초의 건물수량 , 화학성분 및 Net Energy 축적에 관한 연구 I. 기상환경 및 예취관리에 따른 건물 및 에너지 생산성 변화)

  • F. Muhlschlegel;G. Voigtlander
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.2
    • /
    • pp.103-110
    • /
    • 1986
  • The experiments were carried out to study the influence of meteorological factors and cutting management on dry matter accumulation and net energy value in orchardgrass (Dactlylis glomerata L.) cv. Potomac and Baraula, perennial ryegrass (Lolium perenne L.) cv. Reveille and Semperweide and meadow fescue (Festuca pratensis Huds.) cv. Cosmos 11 and N.F.G.. The field trials were designed as a split plot design with three cutting regimes of 6-7 cuts at grazing stage, 4-5 cuts at silage stage and 3 cuts at hat stage in Korea and West Germany from 1975 to 1979. The results obtained are summarized as follows: 1. Productivity of orchardgrass, perennial ryegrass and meadow fescue were mainly affected by cutting systems and meteorological factors, especially air temperature, rainfalls, solar radiation and their interactions. In West Germany, cutting frequency was to be found asan most important factor influenced to dry matter yield and net energy value. 2. Orchardgrass, taken as average of all experimental sites in Korea, produced high yield of 875 kg/10 a in dry matter, which was as much as 32% and 27% higher than those of perennial ryegrass and meadow fescue, respectively. The annual dry matter yields of orchardgrass from 1976 to 1977 were shown a little variation. Dry matter yields in Freising and Braunschweig in West Germany were increased in all grass species continuously. 3. Orchardgrass, perennial ryegrass and meadow fescue showed different response to cutting frequency. The highest dry matter yields were found under 3 cuts at hay stage for orchardgrass and 4-5 cuts at silage stage for perennial ryegrass and meadow fescue. In West Germany, dry matter yields, as average of all grass species under different cutting systems, were 1326 kg, 1175 kg and 1098 kg/10a for 3 cuts, 4-5 cuts and 6-7 cuts, respectively. 4. Chemical composition and net energy concentration of temperate grasses were influenced by cutting managements. The highest yields of digestible crude protein were obtained under 6-7 cuts at grazing stage both in Korea and West Germany. In net energy yields, 3 cutting system produced the highest yield with 694 (orchardgrass), 665 (perennial ryegrass) an 623 kStE/10 a (meadow fescue). However, frequent cutting at grazing and silage stage produced higher yields than 3 cuts at hay stage in Cheju, Suweon and Taekwalyong.

  • PDF

Annual energy yield prediction of building added PV system depending on the installation angle and the location in Korea (건물적용 태양광발전시스템의 국내 지역에 따른 설치각도별 연간 전력생산량 예측에 관한 연구)

  • Kim, Dong Su;Shin, U Cheol;Yoon, Jong Ho
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • There have distinctly been no the installation criteria and maintenance management of BIPV systems, although the BIPV market is consistently going on increasing. In addition, consideration of the BIPV generation quantity which has been installed at several diverse places is currently almost behind within region in Korea. Therefore, the main aim of this study is to evaluate the BIPV generation and to be base data of reducing rate depending on regional installation angles using PVpro which was verified by measured data. Various conditions were an angle of inclination and azimuth under six major cities: Seoul, Daejeon, Daegu, Busan, Gwangju, Jeju-si for the BIPV system generation analysis. As the results, Seoul showed the lowest BIPV generation: 1,054kWh/kWp.year, and Jeju-si have 5percent more generation: 1,108.0kWh/kWp.year than Seoul on horizontal plane. Gwangju and Daejeon turned out to have similar generation of result, and Busan showed the highest generation: 1,193.5kWh/kWp.year, which was increased by over 13percent from Seoul on horizontal plane. Another result, decreasing rate of BIPV generation depending on regional included angle indicate that the best position was located on azimuth: $0^{\circ}$(The south side) following the horizontal position(an angle of inclination: $30^{\circ}$). And the direction on a south vertical position(azimuth: $0^{\circ}$, an angle of inclination: $90^{\circ}$) then turned out reducing rate about 40percent compared with the best one. Therefore, these results would be used to identify the installation angle of the BIPV module as an appropriate position.

Manipulation of Cassava Cultivation and Utilization to Improve Protein to Energy Biomass for Livestock Feeding in the Tropics

  • Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-472
    • /
    • 2003
  • Cassava (Manihot esculenta, Crantz), an annual tropical tuber crop, was nutritionally evaluated as a foliage for ruminants, especially dairy cattle. Cultivation of cassava biomass to produce hay is based on a first harvest of the foliage at three months after planting, followed every two months thereafter until one year. Inter-cropping of leguminous fodder as food-feed between rows of cassava, such as Leucaena leucocephala or cowpea (Vigna unculata), enriches soil fertility and provides additional fodder. Cassava hay contained 20 to 25% crude protein in the dry matter with good profile of amino acids. Feeding trials with cattle revealed high levels of DM intake (3.2% of BW) and high DM digestibility (71%). The hay contains tannin-protein complexes which could act as rumen by - pass protein for digestion in the small intestine. As cassava hay contains condensed tannins, it could have subsequent impact on changing rumen ecology particularly changing rumen microbes population. Therefore, supplementation with cassava hay at 1-2 kg/hd/d to dairy cattle could markedly reduce concentrate requirements, and increase milk yield and composition. Moreover, cassava hay supplementation in dairy cattle could increase milk thiocyanate which could possibly enhance milk quality and milk storage, especially in small holder-dairy farming. Condensed tannins contained in cassava hay have also been shown to potentially reduce gastrointestinal nematodes in ruminants and therefore could act as an anthelmintic agent. Cassava hay is therefore an excellent multi-nutrient source for animals, especially for dairy cattle during the long dry season, and has the potential to increase the productivity and profitability of sustainable livestock production systems in the tropics.

Towards Integrated Pest Management of Rice in Korea

  • Lee, Seung-Chan
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.205-240
    • /
    • 1992
  • In reality, it is a green revolution of the entire agricultural matrix in Korea that integrated pest control plays an important role in the possible breakthrough in rice self-sufficiency. In paddy agroecosystem as man-modified environment, rice is newly established every year by transplantation under diverse water regimes which affect a microclimate. Standing water benefits rice by regulating the microclimate, but it favors the multiplication of certain pets through the amelioration of the microclimate. Further, the introduction of high yielding varieties with the changing of cultural practices results in changing occurrence pattern of certain pests. In general, japonica type varieties lack genes resistant to most of the important pests and insect-borne virus diseases, whereas indica type possesses more genes conferring varietal resistance. Thus, this differences among indica type, form the background of different approaches to pest management. The changes in rice cultivation such as double cropping, growing high-yielding varieties requiring heavy fertilization, earlier transplanting, intensvie-spacing transplanting, and intensive pesticide use as a consequence of the adoption of improves rice production technology, have intensified the pest problems rather than reduced them. The cultivation of resistant varieties are highly effective to the pest, their long term stability is threathened because of the development of new biotypes which can detroy these varieties. So far, three biotypes of N. lugens are reported in Korea. Since each resistant variety is expected to maintain several years the sequential release of another new variety with a different gene at intervals is practised as a gene rotation program. Another approach, breeding multilines that have more than two genes for resistance in a variety are successfully demonstrated. The average annual rice losses during the last 15 years of 1977-’91 are 9.3% due to insect pests without chemical control undertaken, wehreas there is a average 2.4% despite farmers’insecticide application at the same period. In other words, the average annual losses are prvented by 6.9% when chemical control is properly employed. However, the continuous use of a same group of insecticides is followed by the development of pest resistance. Resistant development of C. suppressalis, L. striatellus and N. cincticeps is observed to organophosphorous insecticides by the mid-1960s, and to carbamates by the early 1970s in various parts of the country. Thus, it is apparent that a scheduled chemical control for rice production systems becomes uneconomical and that a reduction in energy input without impairing the rice yield, is necessarily improved through the implementation of integrated pest management systems. Nationwide pest forecasting system conducted by the government organization is a unique network of investigation for purpose of making pest control timely in terms of economic thresholds. A wise plant protection is expected to establish pest management systems in appropriate integration of resistant varieties, biological agents, cultural practices and other measures in harmony with minimizing use of chemical applications as a last weapon relying on economic thresholds.

  • PDF

Drought Estimation Model Using a Evaporation Pan with 50 mm Depth (50mm 깊이 증발(蒸發) 팬을 이용한 한발 평가 모델 설정)

  • Oh, Yong Taeg;Oh, Dong Shig;Song, Kwan Cheol;Um, Ki Cheol;Shin, Jae Sung;Im, Jung Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.92-106
    • /
    • 1996
  • Imaginary grass field was assumed suitable as the representative one for simplified estimation of local drought, and a moisture balance booking model computing drought was developed with the limited numbers of its determining factors, such as crop coefficient of the field, reservoir capacity of the soil, and the beginning point of drought as defined by soil moisture status. The maximum effective rainfall was assumed to be the same as the available free space of soil reservoir capacity. The model is similar to a definite depth evaporation pan, which stores rainfall as much as the available free space on the water in it and consumes the water by evaporation. When the pan keeps water less than a certain defined level, it is droughty. The model simulates soil moisture deficit on the assumed grass field for the drought estimation. The model can assess the water requirement, drought intensity, and the index of yield decrement due to drought. The influencing intensity indices of the selected factors were 100, 21, and 16 respectively for crop coefficient, reservoir capacity, and drought beginning point, determined by the annual water requirements as influenced by them in the model. The optimum values of the selected factors for the model were respectively 58% for crop coefficient defined on the energy indicator scale of the small copper pan evaporation, 50 mm for reservoir capacity on the basis of the average of experimentally determined values for sandy loam, loam, clay loam, and clay soils, and 65% of the reservoir capacity for the beginning point of drought.

  • PDF

Estimation of Tidal Residual Flow and Its Variability in Kyunggi Bay of Korea (경기만 조석 잔차류 산정 및 변동성)

  • Kim, Chang-S.;Lim, H.S.;Kim, Jin-Ah;Kim, Seon-Jeong;Park, K.S.;Jung, K.T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.353-360
    • /
    • 2010
  • The Kyunggi Bay in mid-west of Korea is a relatively large estuarine system that connects the Han River system with Yellow Sea. Due to macro-tidal range of more than 8 m, the urban estuary shows deep tidal channels and wide tidal flats. Since last 30 years, the coastal development is undergoing, yielding noticeable change in environment. Particularly the tidal flat dynamics are generally accepted as being related with tidal residual flows in this area (Kim et al., 2009). We have estimated the annual variation and vertical structure of residual currents with one-year long observed flows in two major tidal channels of Kyunggi Bay. The moving average method and tidal current harmonic analysis yield nearly the same results on residual flow. The residual flow in Jangbong channel ranges from 20 cm/s in summer to 30 cm/s in winter. It is noticeable that the residual flow in Jangbong channel is flood dominant throughout the year, while the flow in Seokmo channel is ebb-dominant residual flow with current speed range of 20-40 cm/s. Due to the baroclinic response of relatively shallow estuary, significant reduction of energy in bottom layers have been observed, indicating the importance of residual circulation to the tidal flat behavior.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF