International Journal of Fluid Machinery and Systems
/
제10권3호
/
pp.264-273
/
2017
In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an AEP optimization tool based on Evolutionary Algorithms was developed by ANDRITZ HYDRO. This tool can simulate all operating modes of the units (bi-directional turbine, pump and sluicing mode) and provide the optimal plant operation that maximizes the AEP to the control system. For the Swansea Bay Tidal Power Plant, the AEP optimization evaluated all different hydraulic and operating concepts and defined the optimal concept that led to a significant AEP increase. A comparison between the optimal plant operation provided by the AEP optimization and the full load operating strategy is presented in the paper, highlighting the advantage of the method in providing the maximum AEP.
In order to examine how accurately the wind farm design software, WindPRO and Meteodyn WT, predict annual energy production (AEP), an investigation was carried out for Seongsan wind farm of Jeju Island. The one-year wind data was measured from wind sensors on met masts of Susan and Sumang which are 2.3 km, and 18 km away from Seongsan wind farm, respectively. MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalysis data was also analyzed for the same period of time. The real AEP data came from SCADA system of Seongsan wind farm, which was compare with AEP data predicted by WindPRO and Meteodyn WT. As a result, AEP predicted by Meteodyn WT was lower than that by WindPRO. The analysis of using wind data from met masts led to the conclusion that AEP prediction by CFD software, Meteodyn WT, is not always more accurate than that by linear program software, WindPRO. However, when MERRA reanalysis data was used, Meteodyn WT predicted AEP more accurately than WindPRO.
The wind generators have been installed with high output power to increase the energy production and efficiency. Hence, Optimal design of the direct-driven PM wind generator, coupled with F.E.M(Finite Element Method) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. Particularly, the parallel computing via internet web service has been applied to loose excessive computing times for optimization. The results of the optimal design of Surface-Mounted Permanent Magnet Synchronous Generator(SPMSG) are compared with each other candidates to verify the usefulness of the maximizing AEP model.
This paper presents how to determine AEP(Annual Energy Production) by a small wind turbine in DuckjeokDo island. Evaluation of AEP is introduced to make a self-contained island including renewable energy sources of wind, solar, and tidal energy. To determine the AEP in DuckjeokDo island, a local wind data is analyzed using the annual wind data from Korea Institute of Energy Research firstly. After the wind data is separated in 12-direction, a mean wind speed at each direction is determined. And then, a small wind turbine power curve is selected by introducing the capacity of a small wind turbine and the energy production of the wind turbine according to each wind direction. Finally, total annual wind energy production for each small wind turbine can be evaluated using the local wind density and local energy production considering a mechanical energy loss. Throughout the analytic study, it is found that the AEP of DuckjeokDo island is about 2.02MWh/y and 3.47MWh/y per a 1kW small wind turbine installed at the altitude of 10 m and 21m, respectively.
In an efforts to encourage renewable energy deployment, the government has initiated so called 1 million green homes program but the accumulated installation capacity of small wind turbine has been about 70kW. It can be explained in several ways such that current subsidy program does not meet public expectations, economic feasibility of wind energy is in doubt or acoustic emission is significant etc. The author investigated annual energy production of Skystream 3.7 wind turbine using measured power curve and wind resource data. The measured power curve of the small wind turbine was obtained through power performance tests at Wol-Ryoung test site. AEP(Annual Energy Production) and CF(Capacity Factor) were evaluated at selected locations with the measured power curve.
풍력발전 단지의 설계시 풍력 자원 평가 과정은 필수적인 과정이다. 풍력 자원 평가를 위해 장기풍황(20년)자료를 이용하여야 하지만 장기간 관측하는 것은 어렵기 때문에 예정지의 1년 이상의 관측데이터로 평가를 실시하였다. 예정지의 단기 풍황탑(Met-Mast; Meteorology Mast) 자료를 주변의 장기관측 자료인 자동기상관측(AWS; Automatic Weather Station)데이터를 이용하여 수학적 보간법으로 예정지의 데이터를 장기 데이터로 변환한 것을 MCP(Measure-Correlative-Predict)기법이라 한다. 본 연구에서는 MCP기법 중 선형 회계방법을 적용하였다. 선택된 MCP 회귀 모델식에 따라 제주 북동부 구좌지역의 AWS데이터를 제주 북동부 한동 지역의 Met-mast 데이터에 적용하여 연간 에너지 생산량을 예측 하였다. 예정지의 단기 풍황을 이용하였을 때와 보정된 장기 풍황을 이용하여 때 연간 에너지 생산량을 비교하였다. 그 결과 연간 약 3.6 %의 예측오차를 보였고, 이는 연간 약 271 MW의 에너지 생산량의 차이를 의미한다. 풍력발전기의 생애주기인 20년을 비교 하였을 때 약 5,420 MW의 차이를 나타내었으며, 이는 약 9개월 정도의 에너지 생산량과 비슷한 수준이다. 결과적으로, 제안 된 선형 회귀 MCP 방법을 이용하는 것이 단기관측 자료를 통한 불확식성을 제거하는 합리적인 방법으로 판단된다.
AWS (Automated Weather Station) wind data was used to predict the annual energy production of Gangwon wind farm having a total capacity of 98 MW in Korea. Two common wind energy prediction programs, WAsP and WindSim were used. Predictions were made for three consecutive years of 2007, 2008 and 2009 and the results were compared with the actual annual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from both prediction programs were close to the actual energy productions and the errors were within 10%.
본 논문에서는 유한요소법(Finite Element Method)을 기반으로 하는 직접 구동형 영구자석 풍력발전기를 DEAS(Dynamic Encoding Algorithm for Searches)를 이용하여 연간 최대에너지 생산량(Annual Energy Production : AEP) 최대화를 목표로 최적설계 하였다. 특히, 풍력발전기의 전 운전영역을 고려하기 위하여 해당풍속에서의 통계적 확률밀도와 연간 운전시간을 적용하여 연간 최대에너지 생산량을 산정 하였으며, 여기서 발생한 과도한 해석수행 연산시간을 줄이기 위해서 전역 최적화 알고리즘인 DEAS를 적용하여 풍력발전기 최적설계를 수행하였다.
본 논문에서는 FEM(Finite Element Method)을 이용한 직접구동형 영구자석 풍력발전기의 최적설계를 위해 최신의 최적화 기법인 MADS(Mesh Adaptive Direct Search)를 적용하였으며, 최적설계 목표는 연간 에너지 생산량(Annual Energy Production : AEP)을 최대화 하는 방향으로 선정하였다. 또한, 풍력발전기의 전 운전영역을 고려하기 위해 해당풍속에서의 통계적 확률밀도와 연간 운전시간을 적용하여 연간 최대에너지 생산량을 산정하였다. 아울러, MADS의 최적설계 결과와 병렬분산 컴퓨팅을 결합한 유전 알고리즘(Genetic Algorithm : GA)의 최적설계 결과를 비교하였으며, MADS는 병렬분산 유전알고리즘에 비해 상대적으로 빠른 수렴성을 나타내었다.
Optimal design of the direct-driven Permanent Magnet(PM) wind generator, combined with F.E.A(Finite Element Analysis) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the entire wind speed characterized by the statistical model of wind speed distribution. Particularly, the proposed parallel computing via internet web service has contributed to reducing excessive computing times for optimization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.