• 제목/요약/키워드: Annual Energy Production(AEP)

검색결과 41건 처리시간 0.02초

Annual Energy Production Maximization for Tidal Power Plants with Evolutionary Algorithms

  • Kontoleontos, Evgenia;Weissenberger, Simon
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권3호
    • /
    • pp.264-273
    • /
    • 2017
  • In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an AEP optimization tool based on Evolutionary Algorithms was developed by ANDRITZ HYDRO. This tool can simulate all operating modes of the units (bi-directional turbine, pump and sluicing mode) and provide the optimal plant operation that maximizes the AEP to the control system. For the Swansea Bay Tidal Power Plant, the AEP optimization evaluated all different hydraulic and operating concepts and defined the optimal concept that led to a significant AEP increase. A comparison between the optimal plant operation provided by the AEP optimization and the full load operating strategy is presented in the paper, highlighting the advantage of the method in providing the maximum AEP.

성산 풍력발전단지의 연간발전량 예측 정확도 평가 (Accuracy Assessment of Annual Energy Production Estimated for Seongsan Wind Farm)

  • 주범철;신동헌;고경남
    • 한국태양에너지학회 논문집
    • /
    • 제36권2호
    • /
    • pp.9-17
    • /
    • 2016
  • In order to examine how accurately the wind farm design software, WindPRO and Meteodyn WT, predict annual energy production (AEP), an investigation was carried out for Seongsan wind farm of Jeju Island. The one-year wind data was measured from wind sensors on met masts of Susan and Sumang which are 2.3 km, and 18 km away from Seongsan wind farm, respectively. MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalysis data was also analyzed for the same period of time. The real AEP data came from SCADA system of Seongsan wind farm, which was compare with AEP data predicted by WindPRO and Meteodyn WT. As a result, AEP predicted by Meteodyn WT was lower than that by WindPRO. The analysis of using wind data from met masts led to the conclusion that AEP prediction by CFD software, Meteodyn WT, is not always more accurate than that by linear program software, WindPRO. However, when MERRA reanalysis data was used, Meteodyn WT predicted AEP more accurately than WindPRO.

최대 연간 에너지 생산을 위한 영구자석형 풍력발전기의 최적설계 (Optimal Design of Permanent Magnet Wind Generator for Maximum Annual Energy Production)

  • 정호창;정상용;한성진;이철균
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2109-2115
    • /
    • 2007
  • The wind generators have been installed with high output power to increase the energy production and efficiency. Hence, Optimal design of the direct-driven PM wind generator, coupled with F.E.M(Finite Element Method) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. Particularly, the parallel computing via internet web service has been applied to loose excessive computing times for optimization. The results of the optimal design of Surface-Mounted Permanent Magnet Synchronous Generator(SPMSG) are compared with each other candidates to verify the usefulness of the maximizing AEP model.

도서지역 소형풍력발전기 에너지 발생량 평가 (Evaluation of Energy Production for a Small Wind Turbine Installed in an Island Area)

  • 장춘만;이종성;전완호;임태균
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.558-565
    • /
    • 2013
  • This paper presents how to determine AEP(Annual Energy Production) by a small wind turbine in DuckjeokDo island. Evaluation of AEP is introduced to make a self-contained island including renewable energy sources of wind, solar, and tidal energy. To determine the AEP in DuckjeokDo island, a local wind data is analyzed using the annual wind data from Korea Institute of Energy Research firstly. After the wind data is separated in 12-direction, a mean wind speed at each direction is determined. And then, a small wind turbine power curve is selected by introducing the capacity of a small wind turbine and the energy production of the wind turbine according to each wind direction. Finally, total annual wind energy production for each small wind turbine can be evaluated using the local wind density and local energy production considering a mechanical energy loss. Throughout the analytic study, it is found that the AEP of DuckjeokDo island is about 2.02MWh/y and 3.47MWh/y per a 1kW small wind turbine installed at the altitude of 10 m and 21m, respectively.

측정 출력곡선과 기상자료를 이용한 소형 풍력발전기 연간 발전량 비교평가 (Measured AEP Evaluations of a Small Wind Turbine using Measured Power Curve & Wind Data)

  • 김석우
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.32-38
    • /
    • 2013
  • In an efforts to encourage renewable energy deployment, the government has initiated so called 1 million green homes program but the accumulated installation capacity of small wind turbine has been about 70kW. It can be explained in several ways such that current subsidy program does not meet public expectations, economic feasibility of wind energy is in doubt or acoustic emission is significant etc. The author investigated annual energy production of Skystream 3.7 wind turbine using measured power curve and wind resource data. The measured power curve of the small wind turbine was obtained through power performance tests at Wol-Ryoung test site. AEP(Annual Energy Production) and CF(Capacity Factor) were evaluated at selected locations with the measured power curve.

제주도 북동부 한동지역의 MCP 회귀모델식을 적용한 AEP계산에 대한 연구 (Estimation of Annual Energy Production Based on Regression Measure-Correlative-Predict at Handong, the Northeastern Jeju Island)

  • 고정우;문서정;이병걸
    • 해양환경안전학회지
    • /
    • 제18권6호
    • /
    • pp.545-550
    • /
    • 2012
  • 풍력발전 단지의 설계시 풍력 자원 평가 과정은 필수적인 과정이다. 풍력 자원 평가를 위해 장기풍황(20년)자료를 이용하여야 하지만 장기간 관측하는 것은 어렵기 때문에 예정지의 1년 이상의 관측데이터로 평가를 실시하였다. 예정지의 단기 풍황탑(Met-Mast; Meteorology Mast) 자료를 주변의 장기관측 자료인 자동기상관측(AWS; Automatic Weather Station)데이터를 이용하여 수학적 보간법으로 예정지의 데이터를 장기 데이터로 변환한 것을 MCP(Measure-Correlative-Predict)기법이라 한다. 본 연구에서는 MCP기법 중 선형 회계방법을 적용하였다. 선택된 MCP 회귀 모델식에 따라 제주 북동부 구좌지역의 AWS데이터를 제주 북동부 한동 지역의 Met-mast 데이터에 적용하여 연간 에너지 생산량을 예측 하였다. 예정지의 단기 풍황을 이용하였을 때와 보정된 장기 풍황을 이용하여 때 연간 에너지 생산량을 비교하였다. 그 결과 연간 약 3.6 %의 예측오차를 보였고, 이는 연간 약 271 MW의 에너지 생산량의 차이를 의미한다. 풍력발전기의 생애주기인 20년을 비교 하였을 때 약 5,420 MW의 차이를 나타내었으며, 이는 약 9개월 정도의 에너지 생산량과 비슷한 수준이다. 결과적으로, 제안 된 선형 회귀 MCP 방법을 이용하는 것이 단기관측 자료를 통한 불확식성을 제거하는 합리적인 방법으로 판단된다.

AWS 풍황데이터를 이용한 강원풍력발전단지 발전량 예측 (AEP Prediction of Gangwon Wind Farm using AWS Wind Data)

  • 우재균;김현기;김병민;유능수
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.119-122
    • /
    • 2011
  • AWS (Automated Weather Station) wind data was used to predict the annual energy production of Gangwon wind farm having a total capacity of 98 MW in Korea. Two common wind energy prediction programs, WAsP and WindSim were used. Predictions were made for three consecutive years of 2007, 2008 and 2009 and the results were compared with the actual annual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from both prediction programs were close to the actual energy productions and the errors were within 10%.

  • PDF

DEAS를 이용한 직접구동형 풍력발전기 최적설계 (Optimal Design of Direct-Driven Wind Generator Using Dynamic Encoding Algorithm for Searches(DEAS))

  • 정호창;이철균;김은수;김종욱;정상용
    • 조명전기설비학회논문지
    • /
    • 제22권10호
    • /
    • pp.24-33
    • /
    • 2008
  • 본 논문에서는 유한요소법(Finite Element Method)을 기반으로 하는 직접 구동형 영구자석 풍력발전기를 DEAS(Dynamic Encoding Algorithm for Searches)를 이용하여 연간 최대에너지 생산량(Annual Energy Production : AEP) 최대화를 목표로 최적설계 하였다. 특히, 풍력발전기의 전 운전영역을 고려하기 위하여 해당풍속에서의 통계적 확률밀도와 연간 운전시간을 적용하여 연간 최대에너지 생산량을 산정 하였으며, 여기서 발생한 과도한 해석수행 연산시간을 줄이기 위해서 전역 최적화 알고리즘인 DEAS를 적용하여 풍력발전기 최적설계를 수행하였다.

MADS를 이용한 직접구동형 풍력발전기 최적설계 (Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS))

  • 박지성;안영준;이철균;김종욱;정상용
    • 조명전기설비학회논문지
    • /
    • 제23권12호
    • /
    • pp.48-57
    • /
    • 2009
  • 본 논문에서는 FEM(Finite Element Method)을 이용한 직접구동형 영구자석 풍력발전기의 최적설계를 위해 최신의 최적화 기법인 MADS(Mesh Adaptive Direct Search)를 적용하였으며, 최적설계 목표는 연간 에너지 생산량(Annual Energy Production : AEP)을 최대화 하는 방향으로 선정하였다. 또한, 풍력발전기의 전 운전영역을 고려하기 위해 해당풍속에서의 통계적 확률밀도와 연간 운전시간을 적용하여 연간 최대에너지 생산량을 산정하였다. 아울러, MADS의 최적설계 결과와 병렬분산 컴퓨팅을 결합한 유전 알고리즘(Genetic Algorithm : GA)의 최적설계 결과를 비교하였으며, MADS는 병렬분산 유전알고리즘에 비해 상대적으로 빠른 수렴성을 나타내었다.

Optimal Design of a Direct-Driven PM Wind Generator Aimed at Maximum AEP using Coupled FEA and Parallel Computing GA

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Hahn, Sung-Chin;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.552-558
    • /
    • 2008
  • Optimal design of the direct-driven Permanent Magnet(PM) wind generator, combined with F.E.A(Finite Element Analysis) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the entire wind speed characterized by the statistical model of wind speed distribution. Particularly, the proposed parallel computing via internet web service has contributed to reducing excessive computing times for optimization.