• 제목/요약/키워드: Annual Background Dose

검색결과 32건 처리시간 0.021초

Radiation Exposure from Nuclear Power Plants in Korea: 2011-2015

  • Lim, Young Khi
    • Journal of Radiation Protection and Research
    • /
    • 제42권4호
    • /
    • pp.222-228
    • /
    • 2017
  • Background: On June 18, 2017, Korea's first commercial nuclear reactor, the Kori Nuclear Power Plant No. 1, was permanently suspended, and the capacity of nuclear power generation facilities will be adjusted according to the governments denuclearization policy. In these circumstances, it is necessary to assess the quality of radiation safety management in nuclear power plants in Korea by evaluating the radiation dose associated with them. Materials and Methods: The average annual radiation dose per unit, the annual radiation dose per person, and the annual dose distribution were analyzed using the radiation dose database of nuclear reactors for the last 5 years. The results of our analysis were compared to the specifications of the Nuclear Safety Act and Medical Law in Korea. Results and Discussion: The annual average per unit radiation dose of global major nuclear power generation was 720 man-mSv, while that of Korea's nuclear power plants was 374 manmSv. No workers exceeded 50 mSv per year or 100 mSv in 5 years. The individual radiation dose according to occupational exposure was 0.59 mSv for nuclear workers, 1.77 mSv for non-destructive workers, and 0.8 mSv for diagnostic radiologists. Conclusion: The radiation safety management of nuclear power plants in Korea has achieved the best outcomes worldwide, which is considered to be the result of the as-low-as-reasonably-achievable (ALARA) approach and strict radiation safety management. Moreover, the occupational exposures were also very low.

Recent Trend of Occupational Exposure to Ionizing Radiation in Korea, 2015-2019

  • Lim, Young Khi
    • Journal of Radiation Protection and Research
    • /
    • 제46권4호
    • /
    • pp.213-217
    • /
    • 2021
  • Background: Radiation exposure can occur as a result of occupational activities utilizing sources of radiation. The average level of occupational exposure is generally similar to the global average, but some workers receive more than this. In this study, the occupational exposure data for workers in Korea to check the recent trend of radiation exposure. Materials and Methods: The data collection and analysis are carried out by two separate periods based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) survey. One is the year 2003 to 2014 for a recent survey, and the other is 2015 to 2019. All available data were collected by annual reports from radiation dose registry organizations. Results and Discussion: The annual dose over the record level to the total workers did not change much compared with the total increasing number of workers in this period. The dose to the nuclear fuel cycle field has a tendency to decrease. It resulted from the efforts of radiation dose reduction with high technology introduced to this area. Also, it is important result that the radiation dose to the workers in radiography is remarkably reduced. Conclusion: The number of radiation workers and average doses were analyzed for occupational categories in Korea. It still needs cooperative efforts between the dose registry organizations for the efficient dose management of Korean radiation workers.

Annual Effective Dose of 210Po from Sea Food Origin (Oysters and Mussels) in Korea

  • Cho, Boeun;Hong, Gi-Hoon;Kim, Suk Hyun;Lee, Hyunmi
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.245-252
    • /
    • 2016
  • Background: Ingestion of $^{210}Po$ laden seafood accounts for a substantial amount of the effective dose of $^{210}Po$. Among seafood items, mollusks, especially domestically produced oysters and mussels, are highly enriched in $^{210}Po$ and are consumed in large quantities in Korea. Materials and Methods: Oysters and mussels around the Korean coasts were collected from major farm areas in November 2013. Samples were spiked with an aliquot of $^{209}Po$ as a yield tracer, and they were digested with $6mol{\cdot}L^{-1}$ $HNO_3$ and $H_2O_2$. The $^{210}Po$ and $^{209}Po$ were spontaneously deposited onto a silver disc in an acidic solution of $0.5mol{\cdot}L^{-1}$ HCl and measured using an alpha spectrometer. The activity concentrations of $^{210}Pb$ and $^{210}Po$ were decay corrected to the sampling date, accounting for the possible in-growth and decay of $^{210}Po$. Results and Discussion: $^{210}Po$ activity concentrations in oysters were in a range from 41.3 to $206Bq{\cdot}(kg-ww)^{-1}$ and mussels in a range from 42.9 to $46.7Bq{\cdot}(kg-ww)^{-1}$. The $^{210}Po$ activity concentration of oysters in the turbid Western coast was higher than the Southern coast. The $^{210}Po$ activity concentration of the oysters was positively correlated ($R^2=0.89$) with those of the suspended particulate matter in the surface water. The calculated annual effective dose of $^{210}Po$ from oysters and mussels consumed by the Korean population was 21-104 and $5.01-5.46{\mu}Sv{\cdot}y^{-1}$. The combined effective dose due to the consumption of oysters and mussels appears to account for about $35{\pm}19%$ of that arising from seafood consumption in the Korean population. Conclusion: The annual effective dose of $^{210}Po$ for oysters in the Korean population was found to be higher than other countries. The total annual effective dose of $^{210}Po$ due to consumption of oysters and mussels consumed in Korea was found to be $76{\pm}42{\mu}Sv{\cdot}y^{-1}$, accounting for $28{\pm}16%$ of the total effective dose of $^{210}Po$ from food in Korea.

Administrative dose control for occupationally-exposed workers in Korean nuclear power plants

  • Kong, Tae Young;Kim, Si Young;Jung, Yoonhee;Kim, Jeong Mi;Cho, Moonhyung
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.351-356
    • /
    • 2021
  • Korean nuclear power plants (NPPs) have various radiation protection programs to attain radiation exposure as low as reasonably achievable (ALARA). In terms of ALARA, this paper provides a comprehensive overview of administrative dose control for occupationally-exposed workers in Korean NPPs. In addition to dose limits, administrative dose constraints are implemented to resolve an inequity of radiation exposure in which some individuals in NPPs receive relatively higher doses than others. Occupational dose constraints in Korean NPPs are presented in this paper with the background of how those values were determined. For pressurized water reactors, 80% and 90% of the annual average limit for an effective dose, 20 mSv/y, are set as the primary and secondary dose constraints, respectively. Pressurized heavy water reactors (PHWRs) have also established the primary and secondary dose constraints corresponding to 70% and 80% of the effective dose limit, and additional constraints for tritium concentration are provided to control internal exposure in PHWRs. Follow-up measures for exceeding these administrative dose constraints are also introduced compared to exceeding the dose limits. Finally, analysis results of dose distributions show how the implementation of administrative dose constraints impacted the occupational dose distributions in Korean NPPs during the years 2009-2018.

An External Dose Assessment of Worker during RadWaste Treatment Facility Decommissioning

  • Chae, San;Park, Seungkook;Park, Jinho;Min, Sujung;Kim, Jongjin;Lee, Jinwoo
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.81-87
    • /
    • 2020
  • Background: Kori unit #1 is permanently shut down after a 40-year lifetime. The Nuclear Safety and Security Commission recommends establishing initial decommissioning plans for all nuclear and radwaste treatment facilities. Therefore, the Korea Atomic Energy Research Institute (KAERI) must establish an initial and final decommissioning plan for radwaste-treatment facilities. Radiation safety assessment, which constitutes one chapter of the decommissioning plan, is important for establishing a decommissioning schedule, a strategy, and cost. It is also a critical issue for the government and public to understand. Materials and Methods: This study provides a method for assessing external radiation dose to workers during decommissioning. An external dose is calculated following each exposure scenario, decommissioning strategy, and working schedule. In this study, exposure dose is evaluated using the deterministic method. Physical characterization of the facility is obtained by both direct measurement and analysis of the drawings, and radiological characterization is analyzed using the annual report of KAERI, which measures the ambient dose every month. Results and Discussion: External doses are calculated at each stage of a decommissioning strategy and found to increase with each successive stage. The maximum external dose was evaluated to be 397.06 man-mSv when working in liquid-waste storage. To satisfy the regulations, working period and manpower must be managed. In this study, average and cumulative exposure doses were calculated for three cases, and the average exposure dose was found to be about 17 mSv/yr in all the cases. Conclusion: For the three cases presented, the average exposure dose is well below the annual maximum effective dose restriction imposed by the international and domestic regulations. Working period and manpower greatly affect the cost and entire decommissioning plan; hence, the chosen option must take account of these factors with due consideration of worker safety.

Development of Self-Questionnaire for Internal Dose Assessment by Food Ingestion

  • JiEun Lee;Hyo Jin Kim;Yong-Uk Kye;Dong-Yeon Lee;Wol Soon Jo;Chang-Geun Lee;Jung-Ki Kim;Yeong-Rok Kang
    • Journal of Radiation Protection and Research
    • /
    • 제47권4호
    • /
    • pp.204-213
    • /
    • 2022
  • Background: The accident at the Fukushima Daiichi nuclear power plant increased the level of anxiety related to the radioactive contamination of various foods sourced in Japan. Particularly, after the accident, the detection of artificial radionuclides in locally produced foods raised food safety concerns. In this study, the radioactivity concentrations and annual ingestions of 40K and 137Cs in food products commonly and frequently consumed by the general public were investigated, and the annual effective dose of each was evaluated. Materials and Methods: The 2016-2018 data from the Radiation Safety Management Report released by the Korea Nuclear Safety Technology Center was referenced for the evaluation of the amounts of 40K and 137Cs contained in food. Using the food-ingestion survey mentioned above as a reference, we selected 62 foods to include in our radioactivity concentration and dose assessment. We also developed a questionnaire and evaluated the responses from the subjects who answered the questionnaire. Results and Discussion: The radioactivity concentration of 137Cs was found to be close to or below the level of minimum detectable activity. Additionally, the annual ingestion of 62 foods was 294.77 kg/yr, the effective doses from 40K and 137Cs were 136.4 and 0.163 μSv/yr, respectively. Conclusion: Thus, the findings confirmed that the effective dose from 40K and 137Cs in food tends to be lower than the effective dose limit of 1 mSv/yr suggested by the International Commission on Radiological Protection (ICRP) Publication 60. The questionnaire developed in this study is expected to be useful for estimating the annual effective dose status of Korean adults who consume foods containing 40K and 137Cs.

Development of Internal Dose Assessment Procedure for Workers in Industries Using Raw Materials Containing Naturally Occurring Radioactive Materials

  • Choi, Cheol Kyu;Kim, Yong Geon;Ji, Seung Woo;Koo, Boncheol;Chang, Byung Uck;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.291-300
    • /
    • 2016
  • Background: It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. Materials and Methods: The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. Results and Discussion: The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are $10Bq{\cdot}g^{-1}$ for $^{40}K$ and $1Bq{\cdot}g^{-1}$ for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups ( < 0.1 mSv, 0.1-0.3 mSv, and > 0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels ( < 0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and > 1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. Conclusion: The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

Proposing a Simple Radiation Scale for the Public: Radiation Index

  • Cho, Gyuseong;Kim, Jong Hyun;Park, Tae Soon;Cho, Kunwoo
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.598-608
    • /
    • 2017
  • A new radiation scale is proposed. With empathy toward the vast majority of people who are not well versed in radiation and related matters, and thus suffering from misunderstanding that breeds unnecessary fear of radiation, the aim of proposing a new radiation scale, radiation index (RAIN), is to put the general public at ease with the concept of radiation. RAIN is defined in dimensionless numbers that relate any specific radiation dose to a properly defined reference level. As RAIN is expressed in plain numbers without an attached scientific unit, the public will feel comfortable with its friendly look, which in turn should help them understand radiation dose levels easily and allay their anxieties about radiation. The expanded awareness and proper understanding of radiation will empower the public to feel that they are not hopeless victims of radiation. The correspondence between RAIN and the specific accumulated dose is established. The equivalence will allow RAIN to serve as a common language of communication for the general public with which they can converse with radiation experts to discuss matters related to radiation safety, radiation diagnosis and therapy, nuclear accidents, and other related matters. Such fruitful dialogues will ultimately enhance public acceptance of radiation and associated technologies.

지각 방사선에 의한 피폭선량측정 및 해석 (Study on the Dosimetry and Assessment of Terrestrial Radiation Exposure)

  • 전재식;오희필;하정우
    • Journal of Radiation Protection and Research
    • /
    • 제15권2호
    • /
    • pp.87-100
    • /
    • 1990
  • 자연환경 방사선의 주 요소의 하나인 지각 방사선에 의한 피폭선량을 정량적으로 측정 해석하기 위하여 24개월간에 걸친 TLD에 의한 연속 적산선량 측정과 주기적인 감마선 분광분석을 수행하였다. TLD로는 LiF PTFE disk형을 사용하였으며 감마선 분광분석에서는 $3&{\phi}{\times}3'$원주형 Nal(Tl) 섬광검출기와 휴대형 다중파고 분석기 (4096 ch)를 사용하였다. 측정한 선량은 모두 실효 선량당량으로 평가하였으며 부수적으로 우주선 전리 성분에 의한 선량당량도 평가할 수 있었다. 분산 가중 평균값을 취한 결과에 의하면 대전 지역의 측정점에서 지각 방사선과 우주선 전리 성부의 체외 피폭에 의한 년간 실효 선량당량은 각각 $564{\pm}4\;{\mu}Sv(64.8{\pm}0.5nSv{\cdot}h^{-1}$$300{\pm}2\;{\mu}Sv(34.3{\pm}0.2nSv{\cdot}h^{-1}$로 나타났다.

  • PDF

Analysis of Trends in Dose through Evaluation of Spatial Dose Rate and Surface Contamination in Radiation-Controlled Area and Personal Exposed Dose of Radiation Worker at the Korea Institute of Radiological and Medical Sciences (KIRAMS)

  • Lee, Bu Hyung;Kim, Sung Ho;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Park, Seungwoo;Jung, Haijo
    • 한국의학물리학회지:의학물리
    • /
    • 제27권3호
    • /
    • pp.146-155
    • /
    • 2016
  • As the probability of exposure to radiation increases due to an increase in the use of radioisotopes and radiation generators, the importance of a radiation safety management field is being highlighted. We intend to help radiation workers with exposure management by identifying the degree of radiation exposure and contamination to determine an efficient method of radiation safety management. The personal exposure doses of the radiation workers at the Korea Institute of Radiological & Medical Sciences measured every quarter during a five-year period from Jan. 1, 2011 till Dec. 31, 2015 were analyzed using a TLD (thermoluminescence dosimeter). The spatial dose rates of radiation-controlled areas were measured using a portable radioscope, and the level of surface contamination was measured at weekly intervals using a piece of smear paper and a low background alpha/beta counter. Though the averages of the depth doses and the surface doses in 2012 increased from those in 2011 by about 14%, the averages were shown to have decreased every year after that. The exposure dose of 27 mSv in 2012 increased from that in 2011 in radiopharmaceutical laboratories and, in the case of the spatial dose rate, the rate of decrease in 2012 was shown to be similar to the annual trend of the whole institute. In the case of the surface contamination level, as the remaining radiation-controlled area with the exception of the I-131 treatment ward showed a low value less than $1.0kBq/m^2$, the annual trend of the I-131 treatment ward was shown to be similar to that of the entire institute. In conclusion, continuous attention should be paid to dose monitoring of the radiation-controlled areas where unsealed sources are handled and the workers therein.