• Title/Summary/Keyword: Annoying Noise

Search Result 53, Processing Time 0.021 seconds

Effect of Pad Structure and Friction Material Composition on Brake Squeal Noise (제동패드의 구조와 마찰재 조성이 제동 스킬소음에 미치는 영향)

  • Goo, Byeong Choon;Kim, Jae Chul;Lee, Beom Joo;Park, Hyoung Chul;Na, Sun Joo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Brake squeal noise has been a challenging problems for a long time. It is very annoying to passengers and residents near tracks. Two methods have been applied to reduce or eliminate brake squeal noise. One is to improve frictional materials; the other is to optimize the topology and structures of brake pads. In this study, we developed two kinds of brake pads; one is a pad whose frictional material is different from the KTX brake pad friction material; the other is a flexible pad that has the same frictional material as that of the KTX brake pad, but a different structure. Squeal noise and friction coefficients were measured and analyzed using a full-scale brake dynamometer. It was found that the dynamometer test can simulate the squeal noise of KTX trains at stations. The squeal frequency of the KTX at 4500Hz was exactly reproduced; this value of 4500Hz was one of the natural frequencies of the KTX brake disc. It was also found that the squeal noise depended on the caliper pressure, initial disc temperature and braking speed. The average friction coefficient was 0.35~0.45. The new pad lowered the squeal noise by 17.3~21.6dB(A).

Quality Assessment and Predistortion Evaluation of the Multi-channel Audio Codec according to the bitrate changing (압축율 변화에 따른 멀티채널 오디오의 품질 및 Predistortion 의 영향 평가)

  • Cha, Kyung-Hwan;Jang, Dae-Young;Kim, Sung-Han;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.55-60
    • /
    • 1996
  • This paper describes the subjective assessment of the multi-channel audio quality according to the bitrate changing and evaluates the predistortion effect to avoid the unmasked noise after matrixing/dematrxing process in transmission and regeneration of the multi-channel audio. The simulation is processed by the perceptual coding that is MPEG-2 Audio layer II algorithm. We evaluate the quality improvement about predistortion using or not by 384, 320, 256, 128kbps. As the result of the double blind subjective assessment, 5 Grade-Impairment Scale is scored under minus one to 320kbps and so audio quality is evaluated to be perceptible, but not annoying in 3/2 channel. The effect of the predistortion is improved one level in 128kbps and especially speech test material I better improved than music test materials.

  • PDF

An Estimation on Two Stroke Low Speed Diesel Engines' Shaft Fatigue Strength due to Torsional Vibrations in Time Domain (시간영역에서 과도 비틀림 진동에 의한 저속 2행정 디젤엔진의 축계 피로강도 평가)

  • Lee, Don-Chool;Kim, Sang-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.572-578
    • /
    • 2007
  • Two stroke low speed diesel engines are widely used for marine propulsion or as power plant prime mover. These engines have many merits which includes higher thermal efficiency, mobility and durability. Yet various annoying vibrations occur sometimes in ships or at the plant itself. Of these vibrations, torsional vibration is very important and dictates a careful investigation during the engme's initial design stage for safe operation. With the rule and limit on torsional vibration in place, shaft strength fatigue due to torsional vibration however demands further analysis which possibly can be incorporated in the classification societies' rule and limit. In addition, the shaft's torsional vibration stresses can be calculated equivalently from accumulated fatigue cycles number due to transient torsional vibration in time domain. In this paper, authors suggest a new estimation method combined with Palmgren-Miner equation. A 6S70MC-C ($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study. Angular velocity was measured, instead of shaft's strain, for simplified measurement and it was converted to torsional vibration stress for accumulated fatigue cycle numbers in shafting life time. Likewise, the accumulated fatigue calculation was compared with shaft fatigue strength limit. This new method can be further realized and confirmed in ship with two stroke low speed diesel engine.