• Title/Summary/Keyword: Annealing process

Search Result 1,589, Processing Time 0.032 seconds

Effects of Low Temperature Annealing at Various Atmospheres and Substrate Surface Morphology on the Characteristics of the Amorphous $Ta_2O_5$ Thin Film Capacitors (여러 분위기에서의 저온 열처리와 폴리머 기판의 표면 morphology가 비정질 $Ta_2O_5$ 박막 커패시터의 특성에 미치는 영향)

  • Jo, Seong-Dong;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.509-514
    • /
    • 1999
  • Interest in the integrated capacitors, which make it possible to reduce the size of and to obtain improved electrical performance of an electronic system, is expanding. In this study, $Ta_2$O\ulcorner thin film capacitors for MCM integrated capacitors were fabricated on a Upilex-S polymer film by DC magnetron reactive sputtering and the effects of low temperature annealing at various atmospheres and substrate surface morphology on the capacitor characteristics were discussed. The low temperature($150^{\circ}C$) annealing produced improved capacitor yield irrespective of the annealing at mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably due to the change of the $Ta_2$O\ulcorner film surface by oxygen, which was explained by conduction mechanism study. Leakage current and breakdown field strength of the capacitors fabricated on the Upilex-S film were 7.27$\times$10\ulcornerA/$\textrm{cm}^2$ and 1.0 MV/cm respectively. These capacitor characteristics were inferior to those of the capacitors fabricated on the Si substrate but enough to be used for decoupling capacitors in multilayer package. Roughness Analysis of each layer by AFM demonstrated that the properties of the capacitors fabricated on the polymer film were affected by the surface morphology of the substrate. This substrate effect could be classified into two factors. One is the surface morphology of the polymer film and the other is the surface morphology of the metal bottom electrode determined by the deposition process. Therefore, the control of the two factors is important to obtain improved electrical of capacitors deposited on a polymer film.

  • PDF

The Effect of Mechanical Grinding on the Magnetic Properties of Nd-Fe-B Ingots (분쇄처리가 Nd-Fe-B계 ingot의 자기적 특성에 미치는 영향)

  • Hwang, Yeon;Kim, Taek-Soo;Lee, Hyo-Sook
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1038-1042
    • /
    • 1998
  • Mechanical grinding and subsequent annealing were applied to the $Nd_5Pr_7Fe_{82}B_6$ and $Nd_{12}Fe_{82}B_6$ ingots, and the crystal structure and magnetic properties were investigated. After 330 hours milling, the particles with $2~3\mu\textrm{m}$average size were identified to be composed of very fine crystallites judging from the x-ray diffraction patterns. The intrinsic coercivity of 18.36 ~ 18.79 kOe and the maximum energy product of 8.32-8.38 MGOe were obtained by the annealing of the milled powders at $600^{\circ}C$ for 2 hours. Annealing at a higher temperature resulted in the improved magnetic properties. However it was revealed that the control of the micro-crystallites formed during the grinding process was more important to get an optimized magnetic properties than the annealing condition.

  • PDF

An Earthwork Districting Model for Large Construction Projects (단지공사의 토공구획 계획 모델)

  • Baek, Hyeon Gi;Kang, Sang Hyeok;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.715-723
    • /
    • 2015
  • Earthwork in a large construction project such as a land development generally costs 20-30% of the total cost. The earthmoving process, comprising of four repetitive tasks: loading, hauling, unloading, returning, is quite simple and it does not need delicate or advanced techniques. Therefore, earthmoving earthwork planning can heavily affect the cost and time., and Even a slight deviation from the plan can increase or decrease the cost and time. This study presents a planning model that minimizes average haul distance in a large complex construction project. Based on earthwork planning, practitioners' heuristics, a districting algorithm and Simulated Annealing algorithm were employed to build the model. Districting algorithm plays a role that divides in dividing an earthmoving area into several sections. Simulated annealing provides a function that decides whether a new generated solution is confident. Finally, the proposed model was applied to a real earthmoving project of a large land development. It was found that the model showed approximately 14% improvement in average hauling distance compared to the actual design plan.

Characteristic of Cu-Ag Added Thin Film on Molybdenum Substrate for an Advanced Metallization Process (TFT-LCDs에 적용 가능한 Cu-Ag 박막에 대한 Mo 기판 위에서의 특성조사)

  • Lee, H.M.;Lee, J.G.
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.257-263
    • /
    • 2006
  • We have investigated the effect of silver added to Cu films on the microstructure evolution, resistivity, surface morphology, stress relaxation temperature, and adhesion properties of Cu(Ag) alloy thin films deposited on Mo glue layer upon annealing. In addition, pure Cu films deposited on Mo has been annealed and compared. The results show that the silver in Cu(Ag) thin films control the grain growth through the coarsening of its precipitates upon annealing at $300^{\circ}C{\sim}600^{\circ}C$ and the grain growth of Cu reveals the activation energy of 0.22 eV, approximately one third of activation energy for diffusion of Ag dopant along the grain boundaries in Cu matrix (0.75 eV). This indicates that the grain growth can be controlled by Ag diffusion along the grain boundaries. In addition, the grain growth can be a major contributor to the decreased resistivity of Cu(Ag) alloy thin films at the temperature of $300^{\circ}C{\sim}500^{\circ}C$, and decreases the resistivity of Cu(Ag) thin films to $1.96{\mu}{\Omega}-cm$ after annealing at $600^{\circ}C$. Furthermore, the addition of Ag increases the stress relaxation temperature of Cu(Ag) thin films, and thus leading to the enhanced resistance to the void formation, which starts at $300^{\circ}C$ in the pure Cu thin films. Moreover, Cu(Ag) thin films shows the increased adhesion properties, possibly resulting from the Ag segregating to the interface. Consequently, the Cu(Ag) thin films can be used as a metallization of advanced TFT-LCDs.

The Effects of Post-Treatments for Wet Spun PVDF on the Piezoelectric Property (습식방사 된 PVDF 섬유의 후 처리를 통한 결정구조의 변화)

  • Yu, Seung Mi;Oh, Hyun Ju;Hwang, Sang-Kyun;Chung, Yong Sik;Hwang, Hui Yun;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 2013
  • The PVDF (polyvinylidene fluoride) fibers were prepared using the wet spinning processing. To improve ${\beta}$-phase crystalline which closely related piezoelectric property PVDF wet spun fibers conducted post treatment. Post treatment is consisted of heat stretching and annealing process. The heat stretching and annealing conditions were controlled by changing temperature between glass transition temperature and melting temperature. From these experimental data, the resulting crystal structure of the ${\beta}$-phase crystalline was confirmed by FT-IR and XRD experiments. From these analysis results, optimum stretching and annealing conditions of the wet spun PVDF fibers were founded to increase high ${\beta}$-phase crystalline. Furthermore results showed that thermal processing had a direct effect on modifying the crystalline microstructure and also confirmed that heat stretching and annealing could increase the degree of crystallinity and ${\beta}$-phase crystalline. Finally, piezoelectric constant ($d_{11}$) of the post heat treated PVDF fibers reinforced composite were measured to investigate the feasibility for the sensing materials.

Analysis of Low Frequency Noise Variation in Temperature Sensor With Bi2Mg2/3Nb4/3O7 (Bi2Mg2/3Nb4/3O7을 사용한 온도센서의 저주파 잡음 특성)

  • Cho, Il Hwan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.486-490
    • /
    • 2015
  • Sensitivity characteristics of temperature sensor with $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMNO) layer were investigated with low frequency noise measurement. Temperature sensor with BMNO layer had high reliability and high sensitivity comparing with conventional MOS type temperature sensor. Annealing temperature variation effects with $600^{\circ}C$, $700^{\circ}C$ and $800^{\circ}C$ were measured and analyzed. Annealing temperature determines trap distribution and $700^{\circ}C$ annealing sample has different pattern comparing with other samples. Results of low frequency noise can offer the design guide of temperature sensor performance.

Surface Oxidation of High Strength Automotive Steels during Continuous Annealing, and the Influence of Trace Elements of P,B, and Sb

  • Sohn, Il-Ryoung;Park, Joong-Chul;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.259-264
    • /
    • 2010
  • In continuous hot dip galvanizing process, oxide formation on steel surface has an influence on Zn wetting. High strength automotive steel contains high amount of Si and Mn, where Si-Mn composite oxides such as $Mn_2SiO_4$ or $MnSiO_3$ covers the surface after annealing. Zn wetting depends on how the aluminothermia reaction can reduce the Mn-Si composite oxides and then form inhibition layer such as $Fe_2Al_5$ on the steel surface. The outward diffusion of metallic ions such as $Mn^{2+}$, $Si^{2+}$ in the steel matrix is very important factor for the formation of the surface oxides on the steel surface. The surface state and grain boundaries provide an important role for the diffusion and the surface oxide reactions. Some elements such as P, Sb, and B have a strong affinity for the interface precipitation, and it influence the diffusivity of metallic ions on grain boundaries. B oxide forms very rapildly on the steel surface during the annealing, and this promote complex oxides with $SiO_2$ or MnO. P has inter-reacted with other elements on the grain boundaries and influence the diffusion through on them. Small addition of Sb could suppress the decarburization from steel surface and retards the formation of internal and external selective oxides on the steel surface. Interface control by the trace elements such as Sb could be available to improve the Zn wettability during the hot dip galvanizing.

Influence of Incorporated Impurities on the Evolution of Microstructure in Electro-Deposited Copper Layer (혼입불순물이 구리 도금층의 미세조직변화에 미치는 영향)

  • Koo, Seok-Bon;Jeon, Jun-Mi;Lee, Chang-Myeon;Hur, Jin-Young;Lee, Hong-Kee
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.4
    • /
    • pp.191-196
    • /
    • 2018
  • The self-annealing which leads evolution of microstructure in copper electroplating layers at room temperature occurs after forming deposition layer. During the process, crystal orientation, size and sheet resistance of plating layer change. Lastly, it causes the change of physical and mechanical characteristics such as a tensile strength of plating layer. In this study, the variation of incorporated impurities, microstructure and sheet resistance of copper plating layer formed by electroplating are measured with and without inorganic additives during the self-annealing. In case of absence of inorganic additives, the copper layer presents strong total intensity of incorporated impurities. During the self-annealing, such width of reduction was significant. Moreover, microstructure and crystal size are increased while the tensile strength is decreased noticeably. On the other hand, in the presence of inorganic additives, there is no observable distinction in the copper plating layer. According to the observation on movements of the incorporated impurities in electrodeposition copper layer, within 12 hours the impurities are continuously shifted from inside of the plating layer to its surface after as-deposited electroplating. Within 24 hours, except for the small portion of surface layer, it is considered that most of the microstructure is transformed.

Electrical Properties of Al2O3 Gate Oxide on 4H-SiC with Post Annealing Fabricated by Aerosol Deposition (에어로졸 데포지션으로 제조된 4H-SiC 위 Al2O3 게이트 산화막의 후열처리 공정에 따른 전기적 특성)

  • Kim, Hong-Ki;Kim, Seong-jun;Kang, Min-Jae;Cho, Myung-Yeon;Oh, Jong-Min;Koo, Sang-Mo;Lee, Nam-suk;Shin, Hoon-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1230-1233
    • /
    • 2018
  • $Al_2O_3$ films with the thickness of 50 nm were fabricated on 4H-SiC by aerosol deposition, and their electrical properties were characterized with different post annealing conditions. As a result, the $Al_2O_3$ film annealed in $N_2$ atmosphere showed decreased fixed charge density at the interface area between the $Al_2O_3$ and SiC, and increased leakage currents due to the generation of oxygen vacancies. From this result, it was confirmed that proper $N_2$ and $O_2$ ratio for the post annealing process is important.

Processing of Low Tin Zr-1Nb-0.69Sn-0.11Fe Alloy Tubes and Effect of Final Heat Treatment on Their Mechanical and Corrosion Properties (저 Sn 함유 Zr-Nb-Sn-Fe 합금 튜브 제조 및 최종 열처리 온도에 따른 기계적/부식특성 변화)

  • Cho, Nam Chan;Lee, Jong Min;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • To investigate the relationship between heat treatment in zirconium alloy tubing process and metallurgical characteristics of Zr-1Nb-0.69Sn-0.11Fe alloy tubes, mechanical and oxidation behaviors of tubes heat treated at different temperatures after the final pilgering were investigated. The stress strain curves exhibited the saturation behaviors in all heat treatment conditions ($460{\sim}600^{\circ}C$) in this study with the onset strain of saturation increased with increase of post-pilgering annealing temperature. The strength fell off rapidly with increasing annealing temperature. The ultimate strength of the low tin Zr-1Nb-0.69Sn-0.11Fe alloy with slightly higher iron and oxygen contents in this study was found to be higher than Zr-1Nb-1Sn-0.1Fe alloy. The oxidation experiments in steam condition revealed that the corrosion resistance of low tin Zr-1Nb-0.69Sn-0.11Fe alloy was better than the Zr-1Nb-1Sn-0.1Fe alloy with a higher Sn content. The weight gain of low tin Zr-1Nb-0.69Sn-0.11Fe alloy tubes gradually increased with the increasing annealing temperature possibly due to the decreased Nb content in the matrix because of the formation of ${\beta}-Nb$ particles.