• Title/Summary/Keyword: Anisotropic characteristic

Search Result 89, Processing Time 0.022 seconds

Bending Characteristic of CFRP & Hybrid Shaped Hat Structure Member According to Stacking Orientation Angle (적층각도변화에 따른 CFRP & 혼성 모자형 구조부재의 굽힘 특성)

  • Kim, Ji-Hoon;Kim, Jung-Ho;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this study, CFRP(Carbon Fiber Reinforced Plastics) that has high specific strength and elastic modulus and low thermal strain was used as a material for the lightweight structural member. CFRP is a fiber material as anisotropic material. The anisotropic material is characterized by the change of its mechanical properties according to stacking orientation angle. CFRP orientation angle was oriented in [A/B]s in order to examine the effect of CFRP orientation angle on the characteristics of energy absorption. CFRP is very weak to the impact from the outside. So, when impact is applied to CFRP, its strength is rapidly lowered. The hybrid material was manufactured by combining CFRP to aluminum which is lightweight and widely used for structural members of the automobile. The hybrid member was shaped as a side member that could support the automobile engine and mount and absorb a large amount of impact energy at the front-end in case of automobile collision. The bending test device was manufactured in accordance with ASTM standard, and mounted to UTM for bending test. For comparing bending characteristics of the hybrid member with those of Aluminum and CFRP member, tests were performed for aluminum, CFRP and hybrid member, respectively.

Effects of Microstructure on the Magnetic Properties of Mg-ferrite Sintered Body (미세 구조가 Mg-페라이트 소결체의 자성에 미치는 영향)

  • 김성재;정명득;백종규
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.436-440
    • /
    • 1995
  • Effects of microstructure of two Mg-ferrite specimens with the same starting composition and relative density but with different grain size on B-H hysteresis loop, natural resonance frequency, and ferromagnetic resonance line width are reported. Such properties as B-H hysteresis loop, saturation magnetization, natural resonance frequency, and ferromagnetic resonance line width were influenced by the microstructure development during sintering. Large grain size specimen showed high saturation magnetization, low coercive force, low natural resonance frequency, and low ferromagnetic resonance line width compared with the specimen of small grain size. The main reason for the changes in properties can be explained by the variation in anisotropic characteristics due to Fe+2 content generated during sintering process.

  • PDF

Performance Analysis of Brushless DC Motor According to Polar Magnetizing Characteristic of Ferrite Bonded Permanent Magnet (페라이트 본드 영구자석의 극이방 자화특성에 따른 BLDC 모터의 특성해석)

  • Baek, Soo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2173-2178
    • /
    • 2010
  • The magnetization directions of a polar magnetized ferrite bonded magnet are analyzed by finite element method (FEM). The influence of the width of SmCo magnets for magnetic field generation is investigated. The surface flux densities of the polar anisotropic magnets are analyzed and compared according to the pole number and thickness of the magnets. And the electromotive force (EMF) values of brushless DC motors with the magnets are investigated. The validity of the analysis method is verified by comparing the analyzed results with measured ones.

The study of Ag etching effect by adding compound on the lead frame process (Lead frame 공정 중 화합물에 따른 Ag 에칭효과)

  • 이경수;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.859-862
    • /
    • 2001
  • This study describes a selective Ag etching solution for use with pattern on the surface of copper. This etching solution uses potassium iodide and potassium sulfate as the ligand that coordinates to the metal ions and ferricyanide as the oxidant. The etching rate was depended on the concentration of co-ligands and time. But the etching rate wasn't depended on the pH(2∼6), and oxidant(K$_3$Fe(CN)$\_$6/). Complete etching of silver can be achieved rapidly within 90sec for 4.46${\mu}$m thick metal films when aqueous solutions containing K$_3$Fe(CN)$\_$6/, K$_2$S$_2$O$\_$8/ and KI was used. This etching solution was characteristic of anisotropic etching.

  • PDF

A STUDY OF RF IMPEDENCE MEASUREMENT AND ANISOTROPIC ETCHING (건식식각장치에서 임피던스 측정과 비등방성 식각에 대한 연구)

  • Kim, Jong-Sik;Kim, Hung-Rak;Kang, Bong-Gu;Kwon, O-Dae
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.94-97
    • /
    • 1989
  • It is shown that fundamental plasma characteristic, which are sheath voltage and ion concentration, can be derived from measuring RF impedence. Plasma characteristics from this simple method are verified by direct measuring, to be reasonable. Using these values a new relation between isotropy and the ratio of sheath voltage to ion concentration is derived. For etch in which $CF_4$ is used, anisotropic etch can be achieved in its order $10^{-12}Vcm^3$ and isotropic etch in $10^{-12}Vcm^3$. These results are useful in every asymetric diode type etch system.

  • PDF

Characteristic of High Speed Synchronous Reluctance Motor(SynRM) (고속용 동기 릴럭턴스 전동기 특성)

  • Joo, S.W.;Hahn, S.C.;Koo, D.H.;Hong, J.P.
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.203-208
    • /
    • 2006
  • This paper presents characteristics of SynRM(Synchronous Reluctance Motor) that is compared with a high speed induction motor. SynRM is much suitable for high speed electric machines because of structural robustness. There are many kinds of SynRM according to the shape of rotors. Particularly, axially laminated anisotropic (ALA) rotor is suitable for high speed instruments. Characteristics of SynRM with ALA rotor is obtained from a governing voltage and torque equation mainly composed of d-axis and q-axis inductance that will be identified with finite element method.

Analysis of large deformation and fatigue life of fabric braided composite hose subjected to cyclic loading

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.949-962
    • /
    • 2016
  • The braking hose in the automotive hydraulic braking system exhibits the complicated anisotropic large deformation while its movable end is moving along the cyclic path according to the steering and bump/rebound motions of vehicle. The complicated large deformation may cause not only the interference with other adjacent automotive parts but also the durability problem resulting in the fatal microcraking. In this regard, the design of high-durable braking hose with the interference-free layout becomes a hot issue in the automotive industry. However, since it has been traditionally relied on the cost-/time-consuming trial and error experiments, the cost- and time-effective optimum design method that can replace the experiment is highly desirable. Meanwhile, the hose deformed configuration and fatigue life are different for different hose cyclic paths, so that their characteristic investigation becomes an important preliminary research subject. As a preliminary step for developing the optimum design methodology, we in this study investigate the hose deformed configuration and the fatigue life for four representative hose cyclic paths.

GaN Dry Etching Characteristics using a planar Inductively coupled plasma (평판형 유도 결합 플라즈마틀 이용한 GaN 건식 식각 특성)

  • Kim, Moon-Young;Kim, Tae-Hyun;Jang, Sang-Hun;Tae, Heung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.276-278
    • /
    • 1997
  • The reliable etching process is one of the essential steps in fabricating GaN based-device. High etch rate is needed to obtain a deeply etched structure and perfect anisotropic etched facet is needed to obtain lasing profile. In the research, therefore, we had proposed a planar inductively coupled plasma etcher (Planar ICP Etcher) as a high density plasma source, and studied the etching mechanism using the $CH_4/H_2$/Ar gas mixture. Dry etching characteristics such as etch rate, anisotropic etching profile and so on, for the III-V nitride layers were investigated using Planar ICP Etcher, based on the plasma characteristic as a variation of plasma process parameters.

  • PDF

A Study on Determination of Stress Intensity Factors for the Interface Crack in Dissimilar AnisotropicMaterials (이방성 이종재료의 접합계면 균열에 대한 응력확대계수 결정에 대한 연구)

  • 이갑래;조상봉;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.887-897
    • /
    • 1991
  • 본 연구에서는 이와 같은 배경에서, Fig. 1(f)와 같이 가장 일반적인 이방성 재료가 접합된 경우의 응력확대계수를 명확히 정의하고, 수치해석법으로 구할 수 있는 외삽식을 제안한다. 또한, 탄성문제의 수치해석 방법으로 적은 요소의 분할로써 고 정밀도의 수치해석 결과를 얻을 수 있는 경계요소법(boundary element method:BEM), 특히 저자들이 개발한 복합재료에 대한 2차원 경계요소법 프로그램을 이용하여 이방성 이종재료 접합계면 균열의 응력확대계수를 해석하고, 복합재료내의 섬유방향에 대한 접합계면 균열의 정성적 거동을 고찰하고자 한다.

A comprehensive description for damage of concrete subjected to complex loading

  • Meyer, Christian;Peng, Xianghe
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.679-689
    • /
    • 1997
  • The damage of concrete subjected to multiaxial complex loading involves strong anisotropy due to its highly heterogeneous nature and the geometrically anisotropic characteristic of the microcracks. A comprehensive description of concrete damage is proposed by introducing a fourth-order anisotropic damage tenser. The evolution of damage is assumed to be related to the principal components of the current states of stress and damage. The unilateral effect of damage due to the closure and opening of microcracks is taken into account by introducing projection tensors that are also determined by the current state of stress. The proposed damage model considers the different kinds of damage mechanisms that result in different failure modes and different patterns of microdefects that cause different unilateral effects. This damage model is embedded in a thermomechanically consistent constitutive equation in which hardening and the triaxial compression caused shear-enhanced compaction can also be taken into account. The validity of the proposed model is verified by comparing theoretical and experimental results of plain and steel fiber reinforced concrete subjected to complex triaxial stress histories.