• Title/Summary/Keyword: Anisotropic Property Ratio

Search Result 13, Processing Time 0.031 seconds

A Study on the Effective Hydraulic Conductivity of an Anisotropic Porous Medium

  • Seong, Kwanjae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropy is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities.

Influence of Anisotropic Property Ratio of Orthotropic Material on Stress Components and Displacement Components at Crack tip Propagating with Constant Velocity Under Dynamic Mode I (동적모드 I 상태에서 직교 이방성체의 이방성비가 등속전파 균열선단의 응력성분과 변위성분에 미치는 영향)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 1995
  • When the crack in orthotropic material is propagating under dynamic model I load, influences of anisotropic property ratio $E_{L}$/ $E_{T}$ on stress and displacement around propagating crack tip are studied in this paper. When M<0.55 and .alpha.=90.deg.(.alpha.; the angle of fiber direction with crack propagating direction, M; crack propagation velocity/shear stress wave velocity), the influence of $E_{L}$/ $E_{T}$ on stress .sigma.$_{x}$, .sigma.$_{y}$, .tau.$_{xy}$ and .sigma.$_{\theta}$ is the greast on .sigma.$_{y}$. Except M<0.55 and .alpha.=90.deg., it is the greast on .sigma.$_{x}$ in any situation. Increasing $E_{L}$/ $E_{T}$, stress components are increased or decreased. When maximum stress is based, the stress .sigma.$_{x}$(.alpha.=90.deg.), .sigma.$_{y}$(.alpha.=0.deg.) and .tau.$_{xy}$ (.alpha.=90.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0. any stresses except .sigma.$_{*}$x/(.alpha.=0.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0.9. When .alpha.=90.deg., the influence of $E_{L}$/ $E_{T}$ on displacement U and V is V>U in any velocities of crack propagation, when .alpha.=0.deg., it is VU in M>0.75 and when $E_{L}$/ $E_{T}$ is increased, U and V are decreased in any conditions.sed in any conditions.tions.tions.tions.

Magnetoresistance Behavior of CuCo and AgCo Films using a Thermal Evaporation (열증착법으로 제조한 박막헝 CuCo와 AgCo의 자기저항 효과)

  • Song, Oh-Sung;Yoon, Ki-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.811-816
    • /
    • 2006
  • The single layered magnetic thin films with anisotropic magnetoresistance behavior have advantage on micro integration due to their low cost in manufacturing. Although the conventional MCo (M=Cu, Ag) amorphous ribbons using a rapid solidification process have showed appropriate for magnetic property for bulk devices, they are not appropriate for micro-scale devices due to their brittleness. We prepared the thermal evaporated 100 nm-thick $Cu_{1-x}Co_x\;and\;Ag_{1-x}Co_x(x=0.1{\sim}0.7)$ films on silicon wafers and investigated the magnetic property of the as-depo films such as magnetization and magnetoresistance ratio. We confirmed that the maximum MR ratio of 1.4 and 2.6% at the external field of 0.5 Tesla in $CuCo_{30},\;AgCo_{40}$ films, respectively. Our result implies that AMR may be slightly less than those of the conventional CuCo and AgCo ribbons due to surface scattering, but their AMR ratio be enough for micro-scale application with easy integration compatibility for the process without surface oxidation.

  • PDF

The Effect of Orientation of Magneto-responsible Particles on the Transmissibility of Magneto-rheological Elastomer (자기장 응답 입자의 배향이 자기유변 탄성체의 전달성에 미치는 영향)

  • Lee, Joo-Hwan;Chung, Kyung-Ho;Yoon, Ji-Hyun;Oh, Jae-Eung;Kim, Min-Soo;Yang, Kyung-Mo;Lee, Seong-Hoon
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • The neodymium magnet inserted mold was proposed to orient magneto-responsible particles efficiently. The anisotropic magneto-rheological elastomer(MRE) was prepared using the new mold and the optimum amounts of the particles was 30 vol.%. As the orientation of particles was increased, the tensile strength of MRE was decreased, while the hardness of MRE was increased. It was found that the MRE containing 30 vol.% of magneto-responsible particles showed the maximum magneto-rheological effect. The ratio of shear modulus shift was 59% at the input current of 3 A. The transmissibility of MRE was decreased with increasing the input current and loading amounts of magneto-responsible particles. Therefore, the damping property of MRE could be improved by preparing the anisotropic MRE.

A Study on the Stability of Anisotropic Cylindrical Shells (비등방성 원통형 쉘의 안정성에 관한 연구)

  • Park, Keun Woo;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.187-196
    • /
    • 2000
  • In this paper, stability analysis is carried out for the out of plane behaviors under compressive loads to the direction of the generator in anisotropic cylindrical shells. It is not easy to obtain the analytic solutions about the stability analysis of anisotropic cylindrical shells consisted of composite materials. For solving this problems, this paper used the finite difference method which is one of the numerical methods. Geometrical property of cylindrical shells transforms the compressive loads into the inplane behaviors. This paper studied the change of stiffness in the direction of the circumferential and stability of shells according to change of fiber angle, curvature, subtended angle and aspect ratio. From result of this study, anisotropic cylindrical shells under compressive loads to the direction of the generator vary greatly with respect to the change of the circumferential stiffness. Therefore, it will be more safe to strengthen the circumferential stiffness of anisotropic cylindrical shells under compressive loads.

  • PDF

Influence of Pd Concentration and Substrate Temperatures on the Magnetic Property in Permalloy Films (Pd 첨가와 기판온도 변화에 따른 퍼말로이 합금박막의 자기특성변화)

  • 이기영;송오성;윤종승;김경각
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.818-821
    • /
    • 2002
  • We investigated the evolution of magnetic property with varying palladium (Pd) contents and elevating substrate temperatures up to 200 $^{\circ}C$ during dc-sputtering. We observed that saturation magnetization (Ms), remanence and anisotropic magnetoresistance (AMR) ratio decrease with Pd contents in the case of keeping the substrate temperature at 3$0^{\circ}C$. However they increase by adding 2 %Pd, then decrease above 3 %Pd when we keep the substrate temperature at 20$0^{\circ}C$. Coercivity does not change with Pd contents. Our results imply that we may tune the Ms and AMR with Pd contents and substrate temperature in permalloy films.

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

A Study on Biomimetic Composite for Design of Artificial Hip Joint (인공 관절 설계를 위한 바이오미메틱 복합재료에 관한 연구)

  • 김명욱;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.234-238
    • /
    • 1999
  • This study suggests the design of the functionally gradient composite, [0/90/0/core]$_s$ cross-ply laminate, to prevent stress concentration induced from the difference of rigidity between the bone and the artificial hip joint and to reinforce the wear property of the surface and the expectation of their mechanical properties. First, the four-point bending test is done about wet bones and dry bones to know the mechanical properties of the cortical bones. In result, the wet bone shows the viscoelastic behavior and the dry bone shows the elastic behavior. Moreover, we expect the properties of the proposed gradient composites as a function of carbon fiber volume fraction in each layer to apply Halpin-Tsai equation, CLPT(classical laminate plate theory), and Bernoulli beam theory etc. and decide the thickness ratio of each lamina in order to match Young's modulus of the anisotropic cortical bone with the proposed gradient composites.

  • PDF

Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete

  • Weiping Zhang;Hui Liu;Yong Zhou;Kaixing Liao;Ying Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2147-2157
    • /
    • 2023
  • The aggregate-forming minerals in concrete undergo volume swelling and microstructure change under neutron irradiation, leading to degradation of physical and mechanical properties of the aggregates and concrete. A comprehensive investigation of volume change and elastic property variation of major aggregate-forming minerals is still lacking, so molecular dynamics simulations have been employed in this paper to improve the understanding of the degradation mechanisms. The results demonstrated that the densities of the selected aggregate-forming minerals of similar atomic structure and chemical composition vary in a similar trend with deposited energy due to the similar amorphization mechanism. The elastic tensors of all silicate minerals are almost isotropic after saturated irradiation, while those of irradiated carbonate minerals remain anisotropic. Moreover, the elastic modulus ratio versus density ratio of irradiated minerals is roughly following the density-modulus scaling relationship. These findings could further provide basis for predicting the volume and elastic properties of irradiated concrete aggregates in nuclear facilities.

A study on anisotropic etching property of single-crystal silicon using KOH solution (KOH 용액을 이용한 단결정 실리콘의 이방성 식각특성에 관한 연구)

  • 김환영;천인호;김창교;조남인
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.449-455
    • /
    • 1997
  • The anisotropic etching behavior of single crystal silicon were studied in aqueous KOH solution. N-type (100) oriented single crystal silicon wafers were used for the study, and the $SiO_2$ layer, whose etching rate is known to be much slower than that of silicon in the KOH solution, was used as a mask for the silicon etching. The silicon etching rate and the etching properties are shown to be a function of etchant temperature uniformity, circulation speed, and circulation direction of the etchant as well as the etchant concentration and the temperature. The etching rate is increased as the temperature is increased from $10\mu \textrm{m}/hr$ to $250\mu \textrm{m}/hr$ in the range of $50^{\circ}C~105^{\circ}C$. Hillock density and height is observed to be correlated with the etchant concentration and the etch temperature. The variation of the hillock density was explained by the ratio between the etching rate of (100) orientation and that of (111) orientation.

  • PDF