• Title/Summary/Keyword: Anisotropic Materials

Search Result 545, Processing Time 0.03 seconds

Analysis of Stress Intensity Factors for an Interface Crack in Anisotropic Dissimilar Materials by Boundary Element Method (경계요소법에 의한 이방성 이종재 접합계면 균열의 응력확대계수 해석)

  • 조상봉;권재도;김태규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.359-370
    • /
    • 1993
  • Up to now, most studies are on interface crack problems in isotropic-isotropic dissimilar materials, but it seems to be not so much on anisotropic dissimlar materials. In this study, the stress intensity factors for an interface crack in anisotropic dissimilar materials are analysed using author's proposed extrapolation method by BEM and we have done a parametric study about material properties or shapes of crack affecting to the stress intensity factors. However, as there are not other's comparable numerical results on these anisotropic dissimilar materials to the best of author's knowledge, the reliability of the present results was proved by following two methods. The first is considering the asymptotic characteristic about stress intensity factors for an interface crack in anisotropic materials when the ansiotropic material approachs to the isotropic material. The second is considering the discontinuity of stress intensity factors between of a crack in an identical homogeneous anisotropic material and an interface crack in anisotropic dissimilar materials.

Anisotropic-Asymmetric Yield Criterion and Anisotropic Hardening Law for Composite Materials: Theory and Formulations

  • Kim Ji-Hoon;Lee Myoung-Gyu;Chung Kwan-Soo;Youn Jae-Ryoun;Kang Tae-Jin
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 2006
  • In this paper, elasto-plastic constitutive equations for highly anisotropic and asymmetric materials are developed and their numerical implementation is presented. Some engineering materials such as fiber reinforced composites show different material behavior in the different material directions (anisotropy) as well as in tension and compression (asymmetry). Although these materials have mostly been analyzed using the anisotropic elastic constitutive equations, the necessity of consideration of plastic properties has been frequently reported in the previous works. In order to include both the anisotropic and asymmetric properties of composite materials, the Drucker-Prager yield criterion is modified by adding anisotropic parameters and initial components of translation. The implementation procedure for the developed theory and algorithms is presented based on the implicit finite element scheme. The measured data from the previous work are used to validate the present constitutive equations.

Analytical methodology for solving anisotropic materials of antiplane problems

  • Ma, Chien-Ching;Cheng, Yih-Hong
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.147-157
    • /
    • 1999
  • An analytical methodology for solving antiplane problem of anisotropic materials is proposed and discussed in detail in this study. The material considered in this study possesses a symmetry plane at z=0. The relationship between the problems of anisotropic materials and the corresponding isotropic problems are established by Ma (1996) on the basis of the general solutions for the shear stresses and displacement in both the polar and Cartesian coordinate systems. This implies that any solution of an anisotropic problem can be obtained by solving a corresponding isotropic problem. In this study some examples and numerical results are presented as an explanation of how the complicated anisotropic problem could be solved by the associated simpler isotropic problem.

Effect of Manufacturing Conditions on the Anisotropic Dimensional Change of STD11 Tool Steel during Heat Treatment (STD11 공구강의 열처리 치수변화 이방성에 미치는 제조 조건의 영향)

  • Hong, Ki-Jung;Song, Jin-Hwa;Chung, In-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.13-22
    • /
    • 2012
  • Forged and flat-bar rolled STD11 tool steel shows anisotropic dimensional change during heat treatment. The dimensional change in the rolling direction is larger than that in the transverse direction. The cause of the anisotropic dimensional change is that the steel is anisotropic in composition, microstructure and other properties. The decrease of anisotropic distortion in tool steel is important for making better precision cold working dies. In this study, the effect of ingot weight and hot rolling reduction ratio on the anisotropic dimensional change of STD11 during heat treatment has been studied. Dimensional change was evaluated by simulating a real heat treatment process, including gas quenching and tempering. Experimental results showed that all the rolled flat-bar products had anisotropic distortion to some degree, but the anisotropic distortion was reduced as hot rolling ratio increased. Ingot weight had a little effect on anisotropic distortion. Microstructural observation showed that the anisotropic dimensional change of STD11 tool steel was closely related to the amount, shape and distribution of coarse carbides.

Approximate Yield Criterion for Voided Anisotropic Ductile Materials

  • Kim, Youngsuk;Sungyeun Won;Kim, Dogsoo;Hyunsung Son
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1349-1355
    • /
    • 2001
  • As most fractures of ductile materials in metal forming processes occurred due to the results of evolution of internal damage - void nucleation, growth and coalescence. In this paper, an approximate yield criterion for voided (porous) anisotropic ductile materials is developed. The proposed approximate yield function is based on Gurson's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion in order to consider the characteristic of anisotropic properties of matrix material. The associated flow rules are presented and the laws governing void growth with strain are derided. Using the proposed model void growth of an anisotropic sheet under biaxial tensile loading and its effect on sheet metal formability are investigated. The yield surface of voided anisotropic sheet and void growth with strain are predicted and compared with the experimental results.

  • PDF

Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites (직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙)

  • 김대용;이명규;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF

Mobility-Spectrum Analysis of an Anisotropic Material System with a Single-Valley Indirect-Band-Gap Semiconductor Quantum-Well

  • Joung, Hodoug;Ahn, Il-Ho;Yang, Woochul;Kim, Deuk Young
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.774-783
    • /
    • 2018
  • Full maximum-entropy mobility-spectrum analysis (FMEMSA) is the best algorithm among mobility spectrum analyses by which we can obtain a set of partial-conductivities associated with mobility values (mobility spectrum) by analyzing magnetic-field-dependent conductivity-tensors. However, it is restricted to a direct band-gap semiconductor and should be modified for materials with other band structures. We developed the modified version of FMEMSA which is appropriate for a material with a single anisotropic valley, or an indirect-band-gap semiconductor quantum-well with a single non-degenerate conduction-band valley e.g., (110)-oriented AlAs quantum wells with a single anisotropic valley. To demonstrate the reliability of the modified version, we applied it to several sets of synthetic measurement datasets. The results demonstrated that, unlike existing FMEMSA, the modified version could produce accurate mobility spectra of materials with a single anisotropic valley.

Fabry-Perot Filter Constructed with Anisotropic Space Layer and Isotropic Mirrors

  • Qi, Hongji;Hou, Yongqiang;Yi, Kui;Shao, Jianda
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • In this study a new design concept of the Fabry-Perot filter, constructed with an anisotropic space layer and a couple of isotropic mirrors, was proposed based on the Maxwell equations and the characteristic matrix method. The single- and double-cavity Fabry-Perot filters were designed, and their optical properties were investigated with a developed software package. In addition, the dependence of the transmittance and phase shift for two orthogonal polarization states on the column angle of the anisotropic space layer and the incidence angle were discussed. We demonstrated that the polarization state of electromagnetic waves and phase shifts can be modulated by exploiting an anisotropic space layer in a polarization F-P filter. Birefringence of the anisotropic space layer provided a sophisticated phase modulation with varied incidence angles over a broad range, resulting in a wide-angle phase shift. This new concept would be useful for designing optical components with isotropic and anisotropic materials.

Yield Functions Based on the Stress Invariants J2 and J3 and its Application to Anisotropic Sheet Materials (J2 와 J3 불변량에 기초한 항복함수의 제안과 이방성 판재에의 적용)

  • Kim, Y.S;Nguyen, P.V.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.214-228
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a novel anisotropic yield function useful for describing the plastic behavior of various anisotropic sheets. The proposed yield function includes the anisotropic version of the second stress invariant J2 and the third stress invariant J3. The anisotropic yield function newly proposed in this study is as follows. F(J2)+ αG(J3)+ βH (J2 × J3) = km The proposed yield function well explains the anisotropic plastic behavior of various sheets by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to aluminum sheet shows symmetrical yielding behavior and to pure titanium sheet shows asymmetric yielding behavior, it was shown that the yield curve and yield behavior of various types of sheet materials can be predicted reasonably by using the proposed new yield anisotropic function.

Time Reversa1 Reconstruction of Ultrasonic Waves in Anisotropic Media

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.54-58
    • /
    • 2008
  • Time reversal (TR) of body waves in fluids and isotropic solids has been used in many applications including ultrasonic NDE. However, the study of the TR method for anisotropic materials is not well established. In this paper, the full reconstruction of the input signal is investigated for anisotropic media using an analytical formulation, called a modular Gaussian beam (MGB) model. The time reversal operation of this model in the frequency domain is done by taking the complex conjugate of the Gaussian amplitude and phase received at the TR mirror position. A narrowband reference signal having a particular frequency and number of cycles is then multiplied and the whole signal is inverse Fourier transformed. The original input signal is seen to be fully restored by the TR process of MGB model and this model can be more generalized to simulate the spatial and temporal focusing effects due to TR process in anisotropic materials.