• Title/Summary/Keyword: Anisotropic Beam

Search Result 106, Processing Time 0.037 seconds

Study on Buckling of Composite Laminated Cylindrical Shells with Transverse Rib (횡리브로 보강된 복합적층 원통형 쉘의 좌굴거동에 관한 연구)

  • Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.493-500
    • /
    • 2004
  • In this study, the effects of ring stiffeners for buckling of cylindrical shells with composite materials were analyzed. The finite element method was used: 3-D beam elements were used for stiffeners and flat shell elements were used for cylindrical shells and were improved by introducing a substitute shear strain. The ring stiffeners were of the transverse rib type. The buckling behaviors of the cylindrical shells were analyzed based on various parameters, such as locations and sizes of stiffeners, diameter/length ratios and boundary conditions of shells, and fiber-reinforced angles. Effective reinforcement was examined by understanding the exact behaviors for buckling. The results of the analysis may serve as references for designs and future investigations.

The Influence of He flow on the Si etching procedure using chlorine gas

  • Kim, J.W.;Park, J.H.;M.Y. Jung;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.65-65
    • /
    • 1999
  • Dry etching technique provides more easy controllability on the etch profile such as anisotropic etching than wet etching process and the results of lots of researches on the characterization of various plasmas or ion beams for semiconductor etching have been reported. Chlorine-based plasmas or chlorine ion beam have been often used to etch several semiconductor materials, in particular Si-based materials. We have studied the effect of He flow rate on the Si and SiO2 dry etching using chlorine-based plasma. Experiments were performed using reactive ion etching system. RF power was 300W. Cl2 gas flow rate was fixed at 58.6 sccm, and the He flow rate was varied from 0 to 120 sccm. Fig. 1 presents the etch depth of si layer versus the etching time at various He flow rate. In case of low He flow rate, the etch rate was measured to be negligible for both Si and SiO2. As the He flow increases over 30% of the total inlet gas flow, the plasma state becomes stable and the etch rate starts to increase. In high Ge flow rate (over 60%), the relation between the etch depth and the time was observed to be nearly linear. Fig. 2 presents the variation of the etch rate depending on the He flow rate. The etch rate increases linearly with He flow rate. The results of this preliminary study show that Cl2/He mixture plasma is good candidate for the controllable si dry etching.

  • PDF

Growth and characterization of periodically polarity-inverted ZnO structures grown on Cr-compound buffer layers

  • Park, J.S.;Goto, T.;Hong, S.K.;Chang, J.H.;Yoon, E.;Yao, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.259-259
    • /
    • 2010
  • Periodically polarity inverted (PPI) ZnO structures on (0001) Al2O3 substrates are demonstrated by plasmas assisted molecular beam epitaxy. The patterning and re-growth methods are used to realize the PPI ZnO by employing the polarity controlling method. For the in-situ polarity controlling of ZnO films, Cr-compound buffer layers are used.[1, 2] The region with the CrN intermediate layer and the region with the Cr2O3 and Al2O3 substrate were used to grow the Zn- and O-polar ZnO films, respectively. The growth behaviors with anisotropic properties of PPI ZnO heterostructures are investigated. The periodical polarity inversion is evaluated by contrast images of piezo-response microscopy. Structural and optical interface properties of PPI ZnO are investigated by the transmission electron microcopy (TEM) and micro photoluminescence ($\mu$-PL). The inversion domain boundaries (IDBs) between the Zn and the O-polar ZnO regions were clearly observed by TEM. Moreover, the investigation of spatially resolved local photoluminescence characteristics of PPI ZnO revealed stronger excitonic emission at the interfacial region with the IDBs compared to the Zn-polar or the O-polar ZnO region. The possible mechanisms will be discussed with the consideration of the atomic configuration, carrier life time, and geometrical effects. The successful realization of PPI structures with nanometer scale period indicates the possibility for the application to the photonic band-gap structures or waveguide fabrication. The details of application and results will be discussed.

  • PDF

Analytical and Experimental Study for Development of Composite Coil Springs (복합재 코일스프링 개발을 위한 수치해석 및 실험적 연구)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper shows the feasibility of using carbon-fiber-reinforced polymer (CFRP) composite materials for manufacturing automotive coil springs. For achieving weight reduction by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the coil spring. First, the shear modulus of a CFRP beam model, which has $45^{\circ}$ ply angles for maximum torsional stiffness, was calculated and compared with the test results. The diameter of the composite spring was predicted to be 17.5 mm for ensuring a spring rate equal to that when using steel material. Finally, a finite element model of the composite coil spring with $45^{\circ}$ ply angles and 17.5 mm wire diameter was constructed and analyzed for obtaining the static spring rate, which was then compared with experimental results.

원자층 식각을 이용한 Sub-32 nm Metal Gate/High-k Dielectric CMOSFETs의 저손상 식각공정 개발에 관한 연구

  • Min, Gyeong-Seok;Kim, Chan-Gyu;Kim, Jong-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.463-463
    • /
    • 2012
  • ITRS (international technology roadmap for semiconductors)에 따르면 MOS(metal-oxide-semiconductor)의 CD (critical dimension)가 45 nm node이하로 줄어들면서 poly-Si/$SiO_2$를 대체할 수 있는 poly-Si/metal gate/high-k dielectric이 대두된다고 보고하고 있다. 일반적으로 high-k dielectric를 식각시 anisotropic 한 식각 형상을 형성시키기 위해서 plasma를 이용한 RIE (reactive ion etching)를 사용하고 있지만 PIDs (plasma induced damages)의 하나인 PIED (plasma induced edge damage)의 발생이 문제가 되고 있다. PIED의 원인으로 plasma의 direct interaction을 발생시켜 gate oxide의 edge에 trap을 형성시키므로 그 결과 소자 특성 저하가 보고되고 있다. 그러므로 본 연구에서는 이에 차세대 MOS의 high-k dielectric의 식각공정에 HDP (high density plasma)의 ICP (inductively coupled plasma) source를 이용한 원자층 식각 장비를 사용하여 PIED를 줄일 수 있는 새로운 식각 공정에 대한 연구를 하였다. One-monolayer 식각을 위한 1 cycle의 원자층 식각은 총 4 steps으로 구성 되어 있다. 첫 번째 step은 Langmuir isotherm에 의하여 표면에 highly reactant atoms이나 molecules을 chemically adsorption을 시킨다. 두 번째 step은 purge 시킨다. 세 번째 step은 ion source를 이용하여 발생시킨 Ar low energetic beam으로 표면에 chemically adsorbed compounds를 desorption 시킨다. 네 번째 step은 purge 시킨다. 결과적으로 self limited 한 식각이 이루어짐을 볼 수 있었다. 실제 공정을 MOS의 high-k dielectric에 적용시켜 metal gate/high-k dielectric CMOSFETs의 NCSU (North Carolina State University) CVC model로 구한 EOT (equivalent oxide thickness)는 변화가 없으면서 mos parameter인 Ion/Ioff ratio의 증가를 볼 수 있었다. 그 원인으로 XPS (X-ray photoelectron spectroscopy)로 gate oxide의 atomic percentage의 분석 결과 식각 중 발생하는 gate oxide의 edge에 trap의 감소로 기인함을 확인할 수 있었다.

  • PDF

중성빔 식각을 이용한 Metal Gate/High-k Dielectric CMOSFETs의 저 손상 식각공정 개발에 관한 연구

  • Min, Gyeong-Seok;O, Jong-Sik;Kim, Chan-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.287-287
    • /
    • 2011
  • ITRS(international technology roadmap for semiconductors)에 따르면 MOS (metal-oxide-semiconductor)의 CD(critical dimension)가 45 nm node이하로 줄어들면서 poly-Si/SiO2를 대체할 수 있는 poly-Si/metal gate/high-k dielectric이 대두되고 있다. 일반적으로 metal gate를 식각시 정확한 CD를 형성시키기 위해서 plasma를 이용한 RIE(reactive ion etching)를 사용하고 있지만 PIDs(plasma induced damages)의 하나인 PICD(plasma induced charging damage)의 발생이 문제가 되고 있다. PICD의 원인으로 plasma의 non-uniform으로 locally imbalanced한 ion과 electron이 PICC(plasma induced charging current)를 gate oxide에 발생시켜 gate oxide의 interface에 trap을 형성시키므로 그 결과 소자 특성 저하가 보고되고 있다. 그러므로 본 연구에서는 이에 차세대 MOS의 metal gate의 식각공정에 HDP(high density plasma)의 ICP(inductively coupled plasma) source를 이용한 중성빔 시스템을 사용하여 PICD를 줄일 수 있는 새로운 식각 공정에 대한 연구를 하였다. 식각공정조건으로 gas는 HBr 12 sccm (80%)와 Cl2 3 sccm (20%)와 power는 300 w를 사용하였고 200 eV의 에너지로 식각공정시 TEM(transmission electron microscopy)으로 TiN의 anisotropic한 형상을 볼 수 있었고 100 eV 이하의 에너지로 식각공정시 하부층인 HfO2와 높은 etch selectivity로 etch stop을 시킬 수 있었다. 실제 공정을 MOS의 metal gate에 적용시켜 metal gate/high-k dielectric CMOSFETs의 NCSU(North Carolina State University) CVC model로 effective electric field electron mobility를 구한 결과 electorn mobility의 증가를 볼 수 있었고 또한 mos parameter인 transconductance (Gm)의 증가를 볼 수 있었다. 그 원인으로 CP(Charge pumping) 1MHz로 gate oxide의 inteface의 분석 결과 이러한 결과가 gate oxide의 interface trap양의 감소로 개선으로 기인함을 확인할 수 있었다.

  • PDF

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

Planning and Dosimetric Study of Volumetric Modulated Arc Based Hypofractionated Stereotactic Radiotherapy for Acoustic Schwannoma - 6MV Flattening Filter Free Photon Beam

  • Swamy, Shanmugam Thirumalai;Radha, Chandrasekaran Anu;Arun, Gandhi;Kathirvel, Murugesan;Subramanian, Sai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5019-5024
    • /
    • 2015
  • Background: The purpose of this study was to assess the dosimetric and clinical feasibility of volumetric modulated arc based hypofractionated stereotactic radiotherapy (RapidArc) treatment for large acoustic schwannoma (AS >10cc). Materials and Methods: Ten AS patients were immobilized using BrainLab mask. They were subject to multimodality imaging (magnetic resonance and computed tomography) to contour target and organs at risk (brainstem and cochlea). Volumetric modulated arc therapy (VMAT) based stereotactic plans were optimized in Eclipse (V11) treatment planning system (TPS) using progressive resolution optimizer-III and final dose calculations were performed using analytical anisotropic algorithm with 1.5 mm grid resolution. All AS presented in this study were treated with VMAT based HSRT to a total dose of 25Gy in 5 fractions (5fractions/week). VMAT plan contains 2-4 non-coplanar arcs. Treatment planning was performed to achieve at least 99% of PTV volume (D99) receives 100% of prescription dose (25Gy), while dose to OAR's were kept below the tolerance limits. Dose-volume histograms (DVH) were analyzed to assess plan quality. Treatments were delivered using upgraded 6 MV un-flattened photon beam (FFF) from Clinac-iX machine. Extensive pretreatment quality assurance measurements were carried out to report on quality of delivery. Point dosimetry was performed using three different detectors, which includes CC13 ion-chamber, Exradin A14 ion-chamber and Exradin W1 plastic scintillator detector (PSD) which have measuring volume of $0.13cm^3$, $0.009cm^3$ and $0.002cm^3$ respectively. Results: Average PTV volume of AS was 11.3cc (${\pm}4.8$), and located in eloquent areas. VMAT plans provided complete PTV coverage with average conformity index of 1.06 (${\pm}0.05$). OAR's dose were kept below tolerance limit recommend by American Association of Physicist in Medicine task group-101(brainstem $V_{0.5cc}$ < 23Gy, cochlea maximum < 25Gy and Optic pathway <25Gy). PSD resulted in superior dosimetric accuracy compared with other two detectors (p=0.021 for PSD.

Comparison of Dosimetrical and Radiobiological Parameters on Three VMAT Techniques for Left-Sided Breast Cancer

  • Kang, Seong-Hee;Chung, Jin-Beom;Kim, Kyung-Hyeon;Kang, Sang-Won;Eom, Keun-Yong;Song, Changhoon;Kim, In-Ah;Kim, Jae-Sung
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Purpose: To compare the dosimetrical and radiobiological parameters among various volumetric modulated arc therapy (VMAT) techniques using restricted and continuous arc beams for left-sided breast cancer. Materials and Methods: Ten patients with left-sided breast cancer without regional nodes were retrospectively selected and prescribed the dose of 42.6 Gy in 16 fractions on the planning target volume (PTV). For each patient, three plans were generated using the $Eclipse^{TM}$ system (Varian Medical System, Palo Alto, CA) with one partial arc 1pVMAT, two partial arcs 2pVMAT, and two tangential arcs 2tVMAT. All plans were calculated through anisotropic analytic algorithm and photon optimizer with 6 MV photon beam of $VitalBEAM^{TM}$. The same dose objectives for each plan were used to achieve a fair comparison during optimization. Results: For PTV, dosimetrical parameters such as Homogeneity index, conformity index, and conformal number were superior in 2pVMAT than those in both techniques. $V_{95%}$, which indicates PTV coverage, was 91.86%, 96.60%, and 96.65% for 1pVMAT, 2pVMAT, and 2tVMAT, respectively. In most organs at risk (OARs), 2pVMAT significantly reduced the delivered doses compared with the other techniques, excluding the doses to contralateral lung. For the analysis of radiobiological parameters, a significant difference in normal tissue complication probability was observed in ipsilateral lung while no difference was observed in the other OARs. Conclusions: Our study showed that 2pVMAT had better plan quality and normal tissue sparing than 1pVMAT and 2tVMAT but not for all parameters. Therefore, 2pVMAT could be considered the priority choice for the treatment planning for left breast cancer.