• Title/Summary/Keyword: Anisodus acutangulus

Search Result 2, Processing Time 0.016 seconds

Leaf epidermal microstructure of the genus Scopolia Jacq. s.l. (Solanaceae-Hyoscymeae) and its systematic significance (광의의 미치광이풀속(Scopolia Jacq. s.l., 가지과-Hyoscymeae족)의 잎표피 미세구조와 이의 계통분류학적 중요성)

  • Hong, Suk-Pyo;Paik, Jin-Hyub
    • Korean Journal of Plant Taxonomy
    • /
    • v.31 no.3
    • /
    • pp.267-282
    • /
    • 2001
  • To examine the leaf epidermal microstructure of three genera (Scopolia s.s., Anisodus, AtroPanthe, including Przewalskia as an outgroup) in the genera Scopolia Jacq. s.l., leaves of 10 species (37 specimens) were investigated by the light microscopy (LM) and scanning electron microscopy (SEM). The stomata of studied taxa were 'amphistomatic type' and the size (guard cell) range was $18-64{\times}11-48{\mu}m$. The size of stomata is slightly differed from between the taxa; the smallest size of stomata were found in the monotypic genus, Przewalskia ($24-27{\times}16-17{\mu}m$), on the other hand the largest one was found in Anisodus carniolicoides ($62-64{\times}43-48{\mu}m$). The stomatal complex was mostly anomocytic (in Scopolia s.s., Anisodus taxa : A. luridus, A. carniolicoides, A. acutangulus) and sometimes anisocytic (in Anisodus tanguticus, Przewalskia, Atropanthe). The stomata is mostly crescent in shape, but rarely circular, especially in Przewalskia tangutica. The shapes of epidermal cells are similar in both adaxial and abaxial sides, and mostly undulate/sinuate polygonal anticlinal wall, but rarely arched in Przewalskia tangutica. The epicuticular wax was not well developed in most studied taxa, except Anisodus tanguticus which is well developed cuticular striae around the stomatal complex. The elongate-headed glandular trichomes were found in Scopolia s.s. and Przewalskia. While the taxa of Anisodus and Atropanthe have not any trichomes (i. e., glabrous), except Anisodus luridus, which has simple or sometimes branched (dendritic- type) non-glandular trichome. Finally, the systematic and ecological significance of the leaf micromorphological features (stomata complex, trichome, etc.) in identification and elucidation of Scopolia s.l. including Przewalskia, especially between or within the genera including among the species is also discussed.

  • PDF

Molecular Cloning and Characterization of a New cDNA Encoding Hyoscyamine 6β-hydroxylase from Roots of Anisodus acutangulus

  • Kai, Guoyin;Chen, Junfeng;Li, Li;Zhou, Genyu;Zhou, Limin;Zhang, Lei;Chen, Yuhui;Zhao, Linxia
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.715-722
    • /
    • 2007
  • A new full-length cDNA encoding hyoscyamine $6\beta$-hydroxylase (designated as aah6h, GenBank Accession No. EF187826), which catalyzes the last committed step in the scopolamine biosynthetic pathway, was isolated from young roots of Anisodus acutangulus by rapid amplification of cDNA ends (RACE) for the first time. The full-length cDNA of aah6h was 1380 bp and contained a 1035 bp open reading frame (ORF) encoding a deduced protein of 344 amino acid residues. The deduced protein had an isoelectric point (pI) of 5.09 and a calculated molecular mass of about 38.7 kDa. Sequence analyses showed that AaH6H had high homology with other H6Hs isolated from some scopolamine-producing plants such as Hyoscyamus niger, Datura metel and Atropa belladonna etc. Bioinformatics analyses results indicated AaH6H belongs to 2-oxoglutarate-dependent dioxygenase superfamily. Phylogenetic tree analysis showed that AaH6H had closest relationship with H6H from A. tanguticus. Southern hybridization analysis of the genomic DNA revealed that aah6h belonged to a multi-copy gene family. Tissue expression pattern analysis firstly founded that aah6h expressed in all the tested tissues including roots, stems and leaves and indicated that aah6h was a constitutive-expression gene, which was the first reported tissue-independent h6h gene compared to other known h6h genes.