• 제목/요약/키워드: Anionic Polymerization

검색결과 112건 처리시간 0.024초

Living Anionic Polymerization of Isocyanates

  • Lee, Jae-Suk
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.198-198
    • /
    • 2006
  • We have identified sodium benzanilide (Na-BA), sodium diphenyl amine (Na-DPA) and sodium deoxibenzoin (Na-DB) as very efficient initiators for the living anionic polymerization of HIC. It has a slow propagation rate with the additive function of chain end protection, offering in the process a perfect control over MW and MWD. The well-defined amphiphilic coil-rod, coil-rod-coil, and rod-coil-rod block-copolymers of PHIC and P2VP with controlled architecture have been synthesized for the first time with ${\sim}100\;%$ yields. The resulting block copolymers showed lamellar film, donuts, solid and hollow micelles, by simply varying the solvents and the block compositions.

  • PDF

Synthesis of New pH-Sensitive Poly(ethylene oxide-b-maleic acid) from Modification of Poly(ethylene oxide-b-N-phenylmaleimide)

  • Go, Da-Hyeon;Jeon, Hee-Jeong;Kim, Tae-Hwan;Kim, Geun-Seok;Choi, Jin-Hee;Lee, Jae-Yeol;Kim, Jung-Ahn;Yoo, Hyun-Oh;Bae, You-Han
    • Macromolecular Research
    • /
    • 제16권7호
    • /
    • pp.659-662
    • /
    • 2008
  • A new and useful poly(ethylene oxide)-based pH-sensitive block copolymer is introduced. Poly(ethylene oxide-b-N-phenylmaleimide) was first synthesized by anionic polymerization of N-phenylmaleimide (N-PMI) using mixed alkali metal polymeric alkoxide by sequential monomer addition method in the mixture of benzene/THF/DMSO (10/5/3, v/v/v) at room temperature. Reductive deimidation of the resulting block copolymer was performed using hydrazine monohydrate leading to the formation of the corresponding pH-sensitive poly(ethylene oxide-b-maleic acid).

탄산칼슘/아크릴계 유기물의 코어-셀 합성에서 음이온 계면활성제의 영향 (The Effect of Anionic Surfactants in Synthesizing Calcium Carbonate/Acrylate Core-Shell Polymer)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.83-90
    • /
    • 2008
  • The core-shell latex particles were prepared by sequential emulsion polymerization using alkyl methacrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We study the effects of core-shell structure of calcium carbonate/alkyl methacrlyate in the presence of an anionic surfactant sodium lauryl sulfate (SLS) and polyoxyethylene alkyl ether sulfate (EU-S133D)). The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by transmission electron microscope (TEM).

Application of Living Ionic Polymerizations to the Design of AB-Type Comb-like Copolymers of Various Topologies and Organizations

  • Lanson, David;Ariura, Fumi;Schappacher, Michel;Borsali, Redouane;Deffieux, Alain
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.173-177
    • /
    • 2007
  • Living anionic and cationic polymerizations have been combined to prepare various types of comb-like copolymers composed of polystyrene (PS) and polyisoprene (PI) blocks, with a precisely controlled architecture. According to the relative placement of these elementary building blocks, combs with randomly distributed PS and PI or with poly(styrene-b-isoprene) diblock branches (I & II, respectively) can be prepared. The reaction procedure initially includes the synthesis of a poly(chloroethylvinyl ether) using living cationic polymerization, which is used as the reactive backbone to successively graft $PS^-Li^+$ and $PI^-Li^+$ or $PI-b-PS^-Li^+$ to obtain structures (I) or (II). The synthesis of Janus-type PS-comb-b-PI-combs (III) initially involves the synthesis of a diblock backbone using living cationic polymerization, which bears two distinct reactive functions having either a protected or activated form. Living $PS^-Li^+$ and $PI^-Li^+$ are then grafted, in two separate steps, onto each of the reactive functions of the backbone, respectively.

음이온성 아크릴아미드와 아크릴산의 역유화 중합에 관한 연구 (A Study on the Inverse Emulsion Polymerization of Anionic Arcrylamide and Acrylic Acid)

  • 이기창;최희천;최봉종;이광일
    • 한국응용과학기술학회지
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 1989
  • To developed new process for obtaining maximum molecular weight of anionic acrylamide and acrylic acid copolymer by inverse emulsion polymerization. Concentration of initiator, reducing agent, surfactant and mole ratio of acrylamide-acrylic acid were studied for the process. Semi-batch processes with method of redox, control of reaction temperature, feeding method of monomer and reaction time, was suitable for maximum molecular weight of P(AMAC) from this process obtained $3.09\;{\time}\;10^6({\bar{M}}n.)$ and $4.41\;{\time}\;10^6({\bar{M}}w.)$ in molecular weight measured by the intrinsic viscosity method. inverse emulsion polymerization mechanism of P(AMAC) does not followed the Smith-Ewart and Medvedev theory, but selected for concentration of initiator, reducing agent, surfactant, water solubility of monomer.

Kevlar 49 섬유 표면에 대한 MAN의 Graft 공중합에 관한 연구 (Graft Copolymerization of Methacrylonitrile(MAN) onto Kevlar 49 Fiber Surface)

  • 김은영;강주영;최재혁;김한도
    • 한국염색가공학회지
    • /
    • 제7권1호
    • /
    • pp.43-50
    • /
    • 1995
  • The grafting of methacrylonitrile(MAN) onto Kevlar 49 filament surface was carried out by anionic polymerization using sodium methylsulfinylcarbanion formed from sodium hydride and dimethyl sulfoxide(DMSO). The effects of reaction conditions on the grafting percentage(GP) and on the tensile strength of the fiber were investgated. GP marktedly increased with increasing metalation time, and NaH concentration, polymerization temperature and time. The tensile strength of fiber decrased with increasing metalation time, and NaH concentration, polymerization temperature and time. The optimum conditions to increase over 40% of GP with below 10% reduction rate of tensile strength of fiber : NaH concentration ; 30.6 mmol/l/0.5g Kevlar, metalation time : 10min, polymerization tempera- ture : 5$0^{\circ}C$, polymerization time: 20 sec, monomer concentration : 1.12mol/l/0.5g Kevlar.

  • PDF

$CO_2$/KOH Catalysis 에 의한 2-Pyrrolidone 과 $\varepsilon$-Caprolactam 의 음이온 중합 (제1보) (Anionic Polymerization of 2-Pyrrolidone and $\varepsilon$-Caprolactam via $CO_2-KOH$ Catalysis (Ⅰ))

  • 정발;최삼권;서길수
    • 대한화학회지
    • /
    • 제20권6호
    • /
    • pp.525-532
    • /
    • 1976
  • CO2/KOH catalysis에 의해 2-pyrrolidone과 ${\varepsilon}$-caprolactam의 음이온 중합을 시도하였으며 이 polymer의 물리적 성질을 조사하였다. 2-Pyrrolidone 중합의 경우는, KOH의 농도가 8mole%이상이고 $CO_2/KOH$ mole ratio가 0.45일 때 percent conversion이 가장 높았으며 $50^{\circ}C$가 최적의 온도임을 알았다. ${\varepsilon}$-Carprolactam의 중합에 있어서는 80 ∼ $90^{\circ}C$에서 percent conversion이 낮았고, 150 ∼ $180^{\circ}C$의 온도에서는$ CO_2/KOH$ mole ratio에 크게 관계없이 높은 percent conversion을 얻을 수 있었다. 이들 polymer의 고유점도는 대략 2.0 ∼ 5.0dl/g의 높은 값이었다.

  • PDF

N,N'-Adipyl-bis-${\n varepsilon}$-caprolactam과 KOH에 의한 ${\n varepsilon}$-Caprolactam의 음이온 중합 (The Anionic Polymerization of ${\n varepsilon}$-Caprolactam using Potassium-hydroxide as a Catalyst and N,N'-Adipyl-bis-${\n varepsilon}$-caprolactam as Initiator)

  • 서환규;최삼권
    • 대한화학회지
    • /
    • 제20권2호
    • /
    • pp.158-165
    • /
    • 1976
  • N,N'-Adipyl-bis-${\varepsilon}$-caprolactam을 개시제로 potassium hydroxide를 촉매로 하여 여러 가지 중합조건에서 ${\varepsilon}$-caprolactam의 음이온 중합을 시도하였다. 중합최적조건은 촉매와 개시제의 농도가 각각 4.2와 1.6 mole%, 중합온도 130$^{\circ}C$, 중합시간 1.5시간 일때이었다. 얻어진 중합체의 intrinsic viscosity는 0.9 dl/g, 분자량 12,000이상이었고 융점은 219$^{\circ}C$였다. Acyl type개시제의 반응성은 N,N'-adipyl-bis-${\varepsilon}$-caprolactam이 가장 크고 N-benzoyl-${\varepsilon}$-caprolactam, N-acetyl-${\varepsilon}$-caprolactam의 순서로 감소하였다. Intrinsic viscosity,와 중합변화율은 촉매와 개시제의 농도증가에 따라 증가하였으며 중합온도에 크게 의존하였다.

  • PDF