• Title/Summary/Keyword: Anion effect

Search Result 508, Processing Time 0.026 seconds

Hepatopotective Effects of Black Rice on Superoxide Anion Radicals in HepG2 Cells

  • Shim, Sang-In;Chung, Jin-Woong;Lee, Jeong-Min;Hwang, Kwon-Tack;Sone, Jin;Hong, Bum-Shik;Cho, Hong-Yon;Jun, Woo-Jin
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.993-996
    • /
    • 2006
  • Cyanidin 3-glucoside (C3G) isolated from black rice was investigated for hepatoprotective effects in HepG2 cells under oxidative stress. When an increase in the production of reactive oxygen species (ROS) was induced by gramoxone, cell viability was drastically decreased by 42%. However, in the presence of C3G, no hepatocytic damage was observed in HepG2 cells treated with gramoxone. C3G was found to manifest a stronger scavenging effect (91%) on superoxide anion radical ($O_2\;^{.-}$) than any of the other natural and synthetic antioxidants. Results suggest that C3G from black rice possesses hepatoprotective effects in vitro, which may be, at least in part, due to $O_2\;^{.-}$ scavenging.

The involvement of oxygen free radicals in the onset of aging (노화에 미치는 산소 유리라디칼에 관한 연구동향)

  • Kim, Jung-Sang;Na, Chang-Su;Kim, Young-Kon
    • Korean Journal of Oriental Medicine
    • /
    • v.3 no.1
    • /
    • pp.229-239
    • /
    • 1997
  • The superoxide anion radical$(O_2)$ poses a threat to macromocules and cell organelles of the living cells. This toxicity damage to all groups of proteins results in loss of enzyme function concerned with metabolism and ion transport, and peroxidation of unsaturated fatty acids and cholesterol results in a change of permeability characteristics of the membrane, and oxidative of nucleic acids results in genomic damage and thereby cause mutation, potential carcinogenesis and somatic damage that produce cellular aging Superoxide dismutase(SOD) has received substantial attention as a potential therapeutic agent. It has been investigated as a possible agent for the prevention of ontogenesis, the reduction of cytotoxic effect of anticancer drugs, and protection against damage in ischemic tissue. It is suggest that $O_2$ is concerned with cellular aging, thereafter we need to investigate herb that activated to SOD.

  • PDF

Characteristic Changes on Nonwoven Fabric by Charcoal Printing (숯 날염에 의한 부직포의 특성 변화)

  • ;;;田村照子;小紫朋子
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.2
    • /
    • pp.303-311
    • /
    • 2004
  • The purposes of this study were to investigate characteristic changes on nonwoven fabric by the charcoal printing. It separate grind charcoal as two different size of particles 45-52${\mu}{\textrm}{m}$ and 53-65${\mu}{\textrm}{m}$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of charcoal printing on nonwoven fabric were to obselve surface changes by a scanning electron microscope, dyeability by using spectrophotometer, moisture regain by oven method, air permeability, anion property, deodoriration and antibacterial activity. The results were as follows: When charcoal powder concentration increased from 3 to 9%, K/S value also increased from 3.06 to 8.55. When charcoal concentration increased, moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. Air permeability decreased when the charcoal printing concentration increased. Anion occurrence appeared 140-160ion/cc from three different kinds of nonwoven fabrics in 3% and 9% charcoal concentration. Therefore, occurred anion ineffectively. In concentration of 3%, rate of deodorization measured as 89%, 83% and 87%, and 9% concentration caused 96%, 86% and 93% of high deodorization. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of 60%, however, 3% and 9% concentration finished nonwoven fabric resulted 99.9% of excellent antibacterial activity.

Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies

  • Khan, Muhammad Imran;Ansari, Tariq Mahmood;Zafar, Shagufta;Buzdar, Abdul Rehman;Khan, Muhammad Ali;Mumtaz, Fatima;Prapamonthon, Prasert;Akhtar, Mehwish
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • In this work, batch adsorption of anionic dye acid green-25 (AG-25) from aqueous solution has been carried out at room temperature using anion exchange membrane (DF-120B) as a noval adsorbent. The effect of various experimental parameters such as contact time, membrane dosage, ionic strength and temperature on the adsorption of dye were investigated. Kinetic models namely pseudo-first-order, pseudo-second-order, Elovich, liquid film diffusion, Bangham and modified freundlich models were employed to evaluate the experimental data. Parameters like adsorption capacities, rate constant and related correlation coefficients for every model are calculated and discussed. It showed that adsorption of AG-25 onto DF-120B followed pseudo-first-order rate expression. Thermodynamic study indicates that adsorption of AG-25 onto DF-120B is an exothermic and spontaneous process.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

Anion Transport or Nucleotide Binding by Ucp2 Is Indispensable for Ucp2-Mediated Efferocytosis

  • Lee, Suho;Moon, Hyunji;Kim, Gayoung;Cho, Jeong Hoon;Lee, Dae-Hee;Ye, Michael B.;Park, Daeho
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.657-662
    • /
    • 2015
  • Rapid and efficient engulfment of apoptotic cells is an essential property of phagocytes for removal of the large number of apoptotic cells generated in multicellular organisms. To achieve this, phagocytes need to be able to continuously uptake apoptotic cells. It was recently reported that uncoupling protein 2 (Ucp2) promotes engulfment of apoptotic cells by increasing the phagocytic capacity, thereby allowing cells to continuously ingest apoptotic cells. However, the functions of Ucp2, beyond its possible role in dissipating the mitochondrial membrane potential, that contribute to elevation of the phagocytic capacity have not been determined. Here, we report that the anion transfer or nucleotide binding activity of Ucp2, as well as its dissipation of the mitochondrial membrane potential, is necessary for Ucp2-mediated engulfment of apoptotic cells. To study these properties, we generated Ucp2 mutations that affected three different functions of Ucp2, namely, dissipation of the mitochondrial membrane potential, transfer of anions, and binding of purine nucleotides. Mutations of Ucp2 that affected the proton leak did not enhance the engulfment of apoptotic cells. Although anion transfer and nucleotide binding mutations did not affect the mitochondrial membrane potential, they exerted a dominant-negative effect on Ucp2-mediated engulfment. Furthermore, none of our Ucp2 mutations increased the phagocytic capacity. We conclude that dissipation of the proton gradient by Ucp2 is not the only determinant of the phagocytic capacity and that anion transfer or nucleotide binding by Ucp2 is also essential for Ucp2-mediated engulfment of apoptotic cells.

The Effect of Stream Anion and River-Bed Materialson Aquatic Insects (계류수의 음이온과 하상재료가 수서곤충에 미치는 영향)

  • Seo, Mun Won;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.89-97
    • /
    • 1999
  • This study was carried out to obtain basic data on the kinds of aquatic insects and their living conditions in the mountain stream. The investigation was done in Bongmyung stream. Experimental Forest, Kangwon National University on aquatic insects, anions and river-bed materials. The results are as follows. 1. At every plot surveyed, diversity index, richness index and evenness index of aquatic insects appeared higher at upper stream than at lower stream in erosion control dam. 2. Anion concentrations were almost the same in plots A, B, C, D and E, but plot F at the lower stream showed 1.5 to 89 times higher concentration than the others. 3. In river-bed materials analysed, particle diameter was bigger at the upper stream than at the lower stream. At the down stream of erosion control dam showed high pebble composition ratio. 4. The number of aquatic insects showed the negative relation with the anion concentration and the positive one with the size of river-bed materials. Especially, they were affected much by the distribution chart of boulder.

  • PDF

Anion-Dependent Exocyclic Mercury(II) Coordination Polymers of Bis-dithiamacrocycle

  • Siewe, Arlette Deukam;Kim, Seulgi;Choi, Kyu Seong;Lee, Shim Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3459-3464
    • /
    • 2014
  • Synthesis and structural characterization of mercury(II) halides and perchlorate complexes (1-4) of bis-$OS_2$-macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type $[Hg(L)X_2]_n$ (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies outside the cavity is six-coordinate with a distorted octahedral geometry, being bound to four adjacent ligands via monodentate Hg-S bonds and two remaining sites are occupied by two terminal chlorido ligands to form a fishnet-like 2D structure. When reacting with mercury(II) iodide, L afforded a 1D coordination polymer $\{[Hg_2(L)I_4]{\cdot}CHCl_3\}_n$ (3) in which each exocyclic Hg atom is four-coordinate, being bound to two sulfur donors from different ligands doubly bridging the ligand molecules in a head-to-tail mode. The coordination sphere in 3 is completed by two iodo terminal ligands, adopting a distorted tetrahedral geometry. On reacting with mercury(II) perchlorate, L forms solvent-coordinated 1D coordination polymer $\{[Hg_2(L)(DMF)_6](ClO_4)_4{\cdot}2DMF\}_n$ (4) instead of the anion-coordination. In 4, the Hg atom is five-coordinate, being bound to two sulfur donors from two different ligands doubly bridging the ligand molecules in a side-by-side mode to form a ribbon-like 1D structure. The three remaining coordination sites in 4 are completed by three DMF molecules in a monodentate manner. Consequently, the different structures and connectivity patterns for the observed exocyclic coordination polymers depending on the anions used are influenced not only by the coordination ability of the anions but also by anion sizes.

Antioxidative Activities of Methanol Extracts from Different Parts of Chrysanthemum zawadskii (구절초의 부위별 메탄올 추출물의 항산화활성)

  • Chung, Hai-Jung;Jeon, In-Sook
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.739-745
    • /
    • 2011
  • The major objective of this study was to investigate the antioxidant activities of methanolic extracts from different parts (flower, leaf stem, and root) of Chrysanthemum zawadskii by employing various in-vitro assay systems. The extraction yields from the flower, leaf stem, and root were 18.347, 12.93, and 11.33-----, respectively. The total polyphenol content was highest in the flower (17.16 mg/100 g) and lowest in the root (11.33 mg/100 g). The antioxidant activities were raised within creasing amounts of extracts, and the extracts from the flower showed the highest effect on the superoxide anion radical scavenging, metal chelating on ferrous ions and reducing power. In addition, the leaf stem also showed good antioxidant activity in various systems. These results suggest that the methanolic extracts from the flower and leaf stem possess excellent antioxidant activities and may thus serve as potential sources of natural antioxidants.

Antioxidative and Free Radical Scavenging Activity of Water Extract From Dandelion (Taruaxacum officinale) (민들레 물추출물의 항산화 및 자유라디칼 소거활성)

  • 강미정;신승렬;김광수
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.253-259
    • /
    • 2002
  • The antioxidative and free radical scavenging activity of water extracts of dandelion were investigated. Antioxidative and radical scavenging activity were assessed by means of different tests; inhibition of peroxidation on linoleic acid model system, scavenging DPPH radical, scavenging of hydroxyl radical by chemiluminescence assay, scavenging of superoxide anion radical by EPR spectroscopy and scavenging of hydrogen peroxide. The leaf extract showed strong antioxidant activity in linoleic acid system. The antioxidant activity of water extracts of dandelion increased with increasing concentrations of extracts. The scavenging activity of the dandelion extracts, on inhibition of the DPPH radical, was related to the reaction time. Hydroxyl radical were generated by lenten reaction and dandelion extract was found to scavenge OH˙in a concentration-dependent manner. The water extract of leaf had effective scavenging activities on hydrogen peroxide and superoxide anion radical. From the these data, it is evident that water extract of dandelion leaf is an effective scavenger for OH˙, O$_2$¨, DPPH˙, hydrogen peroxide. And, the antioxidative effect observed is believed to be partly due to this radical scavenger activity.