• 제목/요약/키워드: Animal protein source

검색결과 506건 처리시간 0.025초

Genome-wide identification of long noncoding RNA genes and their potential association with mammary gland development in water buffalo

  • Jin, Yuhan;Ouyang, Yina;Fan, Xinyang;Huang, Jing;Guo, Wenbo;Miao, Yongwang
    • Animal Bioscience
    • /
    • 제35권11호
    • /
    • pp.1656-1665
    • /
    • 2022
  • Objective: Water buffalo, an important domestic animal in tropical and subtropical regions, play an important role in agricultural economy. It is an important source for milk, meat, horns, skin, and draft power, especially its rich milk that is the great source of cream, butter, yogurt, and many cheeses. In recent years, long noncoding RNAs (lncRNAs) have been reported to play pivotal roles in many biological processes. Previous studies for the mammary gland development of water buffalo mainly focus on protein coding genes. However, lncRNAs of water buffalo remain poorly understood, and the regulation relationship between mammary gland development/milk production traits and lncRNA expression is also unclear. Methods: Here, we sequenced 22 samples of the milk somatic cells from three lactation stages and integrated the current annotation and identified 7,962 lncRNA genes. Results: By comparing the lncRNA genes of the water buffalo in the early, peak, and late different lactation stages, we found that lncRNA gene lnc-bbug14207 displayed significantly different expression between early and late lactation stages. And lnc-bbug14207 may regulate neighboring milk fat globule-EGF factor 8 (MFG-E8) and hyaluronan and proteoglycan link protein 3 (HAPLN3) protein coding genes, which are vital for mammary gland development. Conclusion: This study provides the first genome-wide identification of water buffalo lncRNAs and unveils the potential lncRNAs that impact mammary gland development.

Effect of Methionine Source and Dietary Crude Protein Level on Growth Performance, Carcass Traits and Nutrient Retention in Chinese Color-feathered Chicks

  • Xi, P.B.;Yi, G.F.;Lin, Y.C.;Zheng, C.T.;Jiang, Z.Y.;Vazquez-Anon, M.;Song, G.L.;Knight, C.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권6호
    • /
    • pp.962-970
    • /
    • 2007
  • A total of 1,200 LinNan Chinese color-feathered chicks were used to study the effects of methionine source [DL-2-hydroxy-4-methylthio-butanoic acid (HMTBa) or DL-methionine (DLM)] and dietary crude protein (CP) level on growth performance, carcass traits, and whole-body nitrogen and fat retention. The trial was designed as a $2{\times}2$ factorial arrangement, including two CP levels (adequate and low) and two methionine sources (HMTBa and DL-methionine). Diets were formulated for three phases, starter (0-21 d), grower (21-42 d), and finisher (42-63 d). Chicks fed HMTBa had higher daily gain and improved feed efficiency than DLM during the grower phase (p<0.05). A significant two-way interaction was observed for growth performance during the finisher phase and overall (0-63 d). Growth performance was greater for chicks fed HMTBa than DLM on adequate-CP diets (p<0.05), but this was not observed at low-CP level (p>0.05). Chicks fed low-CP diets grew slower, used feed less efficiently during the grower, finisher phase and overall. On d 42, regardless of dietary CP levels, birds fed HMTBa had higher carcass weights, breast and thigh weights than DLM-fed birds (p<0.04). Birds fed low-CP diet had lighter carcass weights and less breast muscle, thigh muscle, and dressing percentage at the end of starter, grower and finisher phases (p<0.05). Whole body composition analyses found that birds fed HMTBa tended to contain more protein and less fat compared to those chicks fed DLM at the end of the starter phase (p<0.10). Low-CP diets increased CP concentration in the whole body at the end of the finisher phase (p = 0.05). HMTBa supplementation increased whole-body N retention rate during the finisher phase and overall (p<0.01), and low-CP diets reduced N intake and whole-body fat retention during the finisher phase and overall (p<0.05). In summary, HMTBa was better than DLM on an equimolar basis for growth performance, carcass traits, and N retention in Chinese color-feathered chicks. Low-CP diets lowered growth performance as well as carcass traits in color-feathered birds, probably due to imbalanced AA profiles.

The Nutritive Value of Thin Stillage and Wet Distillers' Grains for Ruminants - Review -

  • Mustafa, A.F.;McKinnon, J.J.;Christensen, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권11호
    • /
    • pp.1609-1618
    • /
    • 2000
  • Thin stillage and distillers' grains are byproducts remaining after alcohol distillation from a fermented cereal grain mash. Both byproducts are used as energy and protein sources for ruminants. Due to its liquid nature, more than 50% of thin stillage bypasses the rumen. Thin stillage can be fed alone or in combination with distillers' grains. However, a better utilization by beef cattle is anticipated when thin stillage replaces water as a fluid source. Ruminal undegraded protein content of distillers' grains is greatly affected by type of cereal grain and by drying. Corn distillers' grains have a higher ruminal undegraded protein content than wheat distillers' grains while dried distillers' grains have a higher ruminal undegraded protein content than the wet distillers' grains. Wet and dried distillers' grains can replace up to 50% of corn grain in beef cattle diets without affecting animal performance. The estimated NEg of corn distillers' grains for beef cattle ranges from 100 to 169% of that of corn. In general, wet corn distillers' grains have a higher NEg value than dried corn distillers' grains and the addition of thin stillage improves the NEg of distillers' grains. Improved performance of ruminats fed distillers' byproducts can be attributed to high digestible fiber content, improved rumen environment and a shift in organic matter digestion from the rumen to the small intestine.

Alpha-Ketoglutarate: Physiological Functions and Applications

  • Wu, Nan;Yang, Mingyao;Gaur, Uma;Xu, Huailiang;Yao, Yongfang;Li, Diyan
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Alpha-ketoglutarate (AKG) is a key molecule in the Krebs cycle determining the overall rate of the citric acid cycle of the organism. It is a nitrogen scavenger and a source of glutamate and glutamine that stimulates protein synthesis and inhibits protein degradation in muscles. AKG as a precursor of glutamate and glutamine is a central metabolic fuel for cells of the gastrointestinal tract as well. AKG can decrease protein catabolism and increase protein synthesis to enhance bone tissue formation in the skeletal muscles and can be used in clinical applications. In addition to these health benefits, a recent study has shown that AKG can extend the lifespan of adult Caenorhabditis elegans by inhibiting ATP synthase and TOR. AKG not only extends lifespan, but also delays age-related disease. In this review, we will summarize the advances in AKG research field, in the content of its physiological functions and applications.

Use of Squilla (Orato squilla nepa), Squid (Sepia pharonis) and Clam (Katelysia opima) Meal Alone or in Combination as a Substitute for Fish Meal in the Postlarval Diet of Macrobrachium rosenbergii

  • Naik, S.D.;Sahu, N.P.;Jain, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권9호
    • /
    • pp.1272-1275
    • /
    • 2001
  • Two hundred and forty post-larvae (PL) of fresh water prawn, Macrobrachium rosenbergii were distributed in eight treatment groups with three replicates each. Eight experimental diets were prepared by using squilla (Orato squilla nepa), squid (Sepia pharonis) and clam (katelysia opima) alone or in different combination as source of animal protein and compared to a control diet containing fish meal. Total crude protein content for all dietary treatments was around 32%. Total protein content of fish meal was replaced by an equal amount of protein from different animal protein sources on isonitrogenous basis. Diets were fed at 5% of the body weight of post-larvae twice daily. The experiment was conducted for a period of 60 days. It was found that all the above three protein sources could be used by completely replacing fishmeal except clam meal at higher level of inclusion (26%). A combination of squid and squilla meal at 14% each in the diet increased the growth performance of PL significantly (p<0.05) in terms of Specific growth rate (SGR) % (5.17), FCR (2.12) and PER (1.51). Squilla meal can be used to the maximum level of 38% without any growth depression.

A Review on the Role of Duckweed in Nutrient Reclamation and as a Source of Animal Feed

  • Goopy, J.P.;Murray, P.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권2호
    • /
    • pp.297-305
    • /
    • 2003
  • The family of lemnacae colloquially known as duckweed contains the world' smallest species of flowering plants (macrophytes). Aquatic and free-floating, their most striking qualities are a capacity for explosive reproduction and an almost complete lack of fibrous material. They are widely used for reducing chemical loading in facultative sewage lagoons, but their greatest potential lies in their ability to produce large quantities of protein rich biomass, suitable for feeding to a wide range of animals, including fish, poultry and cattle. Despite these qualities there are numerous impediments to these plants being incorporated into western farming systems. Large genetically determined variations in growth in response to nutrients and climate, apparent anti-nutritional factors, concerns about sequestration of heavy metals and possible transference of pathogens raise questions about the safety and usefulness of these plants. A clear understanding of how to address and overcome these impediments needs to be developed before duckweed is widely accepted for nutrient reclamation and as a source of animal feed.

Protected (bypass) Protein and Feed Value of Hazelnut Kernel Oil Meal

  • Saricicek, B.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권3호
    • /
    • pp.317-322
    • /
    • 2000
  • In situ and in vivo digestion trials were conducted to determine the degradation of dry matter (DM), crude protein (CP) and effective protein degtadability (EPD), and digestibility of nutrients of Hazelnut kernel oil meal (HKOM), and effects of HKOM on nitrogen (N) balance. In the in situ study, nylon bag were suspended in the rumen of 3 Karayaka rams to estimate protected protein. Protein sources were analyzed for pepsin soluble protein (PSP) using a Pepsin Digestion Method. In the digestion trials, 4 Karayaka rams (36 mo.) were used in a $4{\times}4$ Latin square to evaluate the digestibility of nutrients and N retention to measure effects of diets containing HKOM, soybean meal (SBM) corn gluten meal (CGM) and urea (U). The degradability of DM and CP, and PSP content of HKOM were lower (p>0.05) than that of SBM, but higher (p<0.001) than that of CGM. EPD of HKOM was higher (p<0.01) than that of SBM or CGM. The apparent digestion coefficients of organic matter and CP for HKOM were lower than for SBM, but higher than for CGM. N retention of HKOM was higher than that of SBM and lower than that of CGM (p>0.05). In conclusion, these data may indicate that the HKOM is a high digestible feed source with a value between SBM and CGM.

Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends

  • Kim, Tae-Kyung;Yong, Hae In;Kim, Young-Boong;Kim, Hyun-Wook;Choi, Yun-Sang
    • 한국축산식품학회지
    • /
    • 제39권4호
    • /
    • pp.521-540
    • /
    • 2019
  • This review summarizes the current trends related to insect as food resources among consumers, industry, and academia. In Western societies, edible insects have a greater potential as animal feed than as human food because of cultural biases associated with harmful insects, although the abundant characteristics of edible insects should benefit human health. Nevertheless, many countries in Asia, Oceania, Africa, and Latin America utilize insects as a major protein source. Using insects can potentially solve problems related to the conventional food-supply chain, including global water, land, and energy deficits. Academic, industry, and government-led efforts have attempted to reduce negative perceptions of insects through developing palatable processing methods, as well as providing descriptions of health benefits and explaining the necessity of reducing reliance on other food sources. Our overview reveals that entomophagy is experiencing a steady increase worldwide, despite its unfamiliarity to the consumers influenced by Western eating habits.

Technical Functional Properties of Water- and Salt-soluble Proteins Extracted from Edible Insects

  • Kim, Tae-Kyung;Yong, Hae In;Jeong, Chang Hee;Han, Sung Gu;Kim, Young-Boong;Paik, Hyun-Dong;Choi, Yun-Sang
    • 한국축산식품학회지
    • /
    • 제39권4호
    • /
    • pp.643-654
    • /
    • 2019
  • The amino acid composition, protein quality, and protein functionality of protein solution extracted from three edible insect species were investigated. We used 0.02% ascorbic acid and 0.58 M saline solution to extract water-soluble and salt-soluble proteins from the three insect species. Extracted protein solutions of Tenebrio molitor (TM), Allomyrina dichotoma (AD), and Protaetia brevitarsis seulensis (PB) were divided into six groups, according to species and solubility: WTM, WAD, WPB (water-soluble), and STM, SAD, and SPB (salt-soluble). Defatted TM had the highest protein content, but its protein solubility was the lowest, for both water and saline solutions. Amino acid composition differed by edible insect species and buffer type; SPB had the highest protein quality, followed by WPB. PB had a higher pH than the other species. Color values also differed among species. SPB had abundant high molecular weight proteins, compared with other treatments; and also had the highest foaming capacity, foam stability, and emulsifying capacity. In conclusion, PB is a good source of functional protein compared with the other studied species. Additionally, protein extraction using saline solution is promising as a useful method for improving edible insect protein functionality.

Defatting and Sonication Enhances Protein Extraction from Edible Insects

  • Choi, Byoung Deug;Wong, Nathan A.K.;Auh, Joong-Hyuck
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.955-961
    • /
    • 2017
  • Edible insects are attracting growing interest as a sustainable source of protein for addition to processed meat and dairy products. The current study investigated the optimal method for protein extraction from mealworm larvae (Tenebrio molitor), cricket adults (Gryllus bimaculatus), and silkworm pupae (Bombyx mori), for use in further applications. After defatting with n-hexane for up to 48 h, sonication was applied for 1-20 min and the protein yield was measured. All samples showed a total residual fat percentage below 1.36%, and a 35% to 94% improvement in protein yield (%). In conclusion, defatting with n-hexane combined with sonication improves the protein yield from insect samples.