• Title/Summary/Keyword: Animal disease model

Search Result 451, Processing Time 0.027 seconds

Evaluating AI Models and Predictors for COVID-19 Infection Dependent on Data from Patients with Cancer or Not: A Systematic Review

  • Takdon Kim;Heeyoung Lee
    • Korean Journal of Clinical Pharmacy
    • /
    • v.34 no.3
    • /
    • pp.141-154
    • /
    • 2024
  • Background: As preexisting comorbidities are risk factors for Coronavirus Disease 19 (COVID-19), improved tools are needed for screening or diagnosing COVID-19 in clinical practice. Difficulties of including vulnerable patient data may create data imbalance and hinder the provision of well-performing prediction tools, such as artificial intelligence (AI) models. Thus, we systematically reviewed studies on AI prognosis prediction in patients infected with COVID-19 and existing comorbidities, including cancer, to investigate model performance and predictors dependent on patient data. PubMed and Cochrane Library databases were searched. This study included research meeting the criteria of using AI to predict outcomes in COVID-19 patients, whether they had cancer or not. Preprints, abstracts, reviews, and animal studies were excluded from the analysis. Majority of non-cancer studies (54.55 percent) showed an area under the curve (AUC) of >0.90 for AI models, whereas 30.77 percent of cancer studies showed the same result. For predicting mortality (3.85 percent), severity (8.33 percent), and hospitalization (14.29 percent), only cancer studies showed AUC values between 0.50 and 0.69. The distribution of comorbidity data varied more in non-cancer studies than in cancer studies but age was indicated as the primary predictor in all studies. Non-cancer studies with more balanced datasets of comorbidities showed higher AUC values than cancer studies. Based on the current findings, dataset balancing is essential for improving AI performance in predicting COVID-19 in patients with comorbidities, especially considering age.

Development of a Discogenic Pain Animal Model: Preliminary Study (추간판성통증 동물모델의 개발: 초기 연구)

  • Kim, Byung-Jo;Lee, Min;Lim, Eun-Jeong;Yu, Sung-Wook;Hong, Sung-Ha;Hong, Seok-Joo;Na, Heung-Sik
    • Annals of Clinical Neurophysiology
    • /
    • v.11 no.2
    • /
    • pp.41-47
    • /
    • 2009
  • Background: Discogenic pain can develop into chronic low back pain that is very difficult to treat effectively, because the pathogenesis of the disease still remains controversial. To clarify the pathogenesis, numerous animal models of intervertebral disc degeneration have been proposed in the literature, each with attendant advantages and disadvantages. The aim of this study was to determine the most efficacious method and dose of complete Freund's adjuvant (CFA) injection into intervertebral disc to develop a discogenic pain in a rat. Methods: CFA was injected into the L5-L6 or L4-L5 disc of male Sprague-Dawley rats in various conditions including a dose of CFA (10, 20, or 50 uL), drilling, injection site sealing using cyanoacrylate, and injection velocity. Sham animals were subjected to the same procedure, except for the CFA injection. Mechanical and heat allodynia were serially measured at both hindpaws until 8 weeks post-operatively. Serial MRI analyses were performed to observe degenerative changes of the discs. In addition, CGRP & Substance P-immunoreactivities (ir) in the superficial dorsal horn were evaluated at 4 weeks using immunohistochemistry. Results: Each condition provoked various problems such as development of hindpaw paralysis, CFA leakage, and no pain development. Mid-sagittal T2 MRI revealed no significant degenerative changes in the CFA injected disc. The CGRP-ir of the bilateral superficial dorsal horns at the level of L5-L6 was significantly increased in the CFA group. Conclusions: A total of 10 uL CFA injection into L5-L6 disc for a period of 10 minutes using a 26-gauge needle without drilling was the most efficacious way to develop discogenic pain animal model.

  • PDF

In vivo multiplex gene targeting with Streptococcus pyogens and Campylobacter jejuni Cas9 for pancreatic cancer modeling in wild-type animal

  • Chang, Yoo Jin;Bae, Jihyeon;Zhao, Yang;Lee, Geonseong;Han, Jeongpil;Lee, Yoon Hoo;Koo, Ok Jae;Seo, Sunmin;Choi, Yang-Kyu;Yeom, Su Cheong
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.26.1-26.14
    • /
    • 2020
  • Pancreatic ductal adenocarcinoma is a lethal cancer type that is associated with multiple gene mutations in somatic cells. Genetically engineered mouse is hardly applicable for developing a pancreatic cancer model, and the xenograft model poses a limitation in the reflection of early stage pancreatic cancer. Thus, in vivo somatic cell gene engineering with clustered regularly interspaced short palindromic repeats is drawing increasing attention for generating an animal model of pancreatic cancer. In this study, we selected Kras, Trp53, Ink4a, Smad4, and Brca2 as target genes, and applied Campylobacter jejuni Cas9 (CjCas9) and Streptococcus pyogens Cas9 (SpCas9) for developing pancreatic cancer using adeno associated virus (AAV) transduction. After confirming multifocal and diffuse transduction of AAV2, we generated SpCas9 overexpression mice, which exhibited high double-strand DNA breakage (DSB) in target genes and pancreatic intraepithelial neoplasia (PanIN) lesions with two AAV transductions; however, wild-type (WT) mice with three AAV transductions did not develop PanIN. Furthermore, small-sized Cjcas9 was applied to WT mice with two AAV system, which, in addition, developed high extensive DSB and PanIN lesions. Histological changes and expression of cancer markers such as Ki67, cytokeratin, Mucin5a, alpha smooth muscle actin in duct and islet cells were observed. In addition, the study revealed several findings such as 1) multiple DSB potential of AAV-CjCas9, 2) peri-ductal lymphocyte infiltration, 3) multi-focal cancer marker expression, and 4) requirement of > 12 months for initiation of PanIN in AAV mediated targeting. In this study, we present a useful tool for in vivo cancer modeling that would be applicable for other disease models as well.

A review on three dimensional scaffolds for tumor engineering

  • Ceylan, Seda;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.141-155
    • /
    • 2016
  • Two-dimensional (2D) cell culture and in vivo cancer model systems have been used to understand cancer biology and develop drug delivery systems for cancer therapy. Although cell culture and in vivo model studies have provided critical contribution about disease mechanism, these models present important problems. 2D tissue culture models lack of three dimensional (3D) structure, while animal models are expensive, time consuming, and inadequate to reflect human tumor biology. Up to the present, scaffolds and 3D matrices have been used for many different clinical applications in regenerative medicine such as heart valves, corneal implants and artificial cartilage. While tissue engineering has focused on clinical applications in regenerative medicine, scaffolds can be used in in vitro tumor models to better understand tumor relapse and metastasis. Because 3D in vitro models can partially mimic the tumor microenvironment as follows. This review focuses on different scaffold production techniques and polymer types for tumor model applications in cancer tissue engineering and reports recent studies about in vitro 3D polymeric tumor models including breast, ewing sarcoma, pancreas, oral, prostate and brain cancers.

Analysis of Jet-drop Distance from the Multi Opening Slots of Forced-ventilation Broiler House (강제 환기식 육계사 다중 입기 슬롯에서의 입기류 도달거리 분석)

  • Kwon, Kyeong-Seok;Ha, Tae-Hwan;Lee, In-Bok;Hong, Se-Woon;Seo, Il-Hwan;Jessie, P. Bitog
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.55-65
    • /
    • 2012
  • In the winter season, when the ventilation system is operating, the fresh cold air from the slot-type openings of broiler house which directly reached the animal zone can cause various problems such as thermal stress, decreasing of feed and water consumption, occurrence of respiratory disease, and etc. Therefore it is very important to control the trajectory of aero-flow from the slot openings to induce an efficient thermal heat change. Jet-drop distance model was proposed to predict and control the jet-trajectory. However their study was restricted due to the small scaled model and difficulties of measuring the Jet-drop distance. In this study, CFD was applied to analyze qualitatively and quantitatively the jet-drop distance in a real broiler house. The various variables were considered such as installed slot-angle, designed ventilation rate, and the outdoor ambient temperature. From the present study, two linear-regression models using the Jet-drop factor and corrected Archimedes number, and their R-squared values 0.744 and 0.736, respectively, were used. From this study, the applicability of CFD on the analysis of Jet-drop distance model was confirmed.

Ovalbumin Induces Atopic Dermatitis-like Skin Lesions in Different Species of mice: pilot study (Ovalbumin으로 유도한 아토피성 피부염의 마우스 종별 차이에 관한 예비연구)

  • Tae-Young Gil;Bo-Ram Jin;Hyo-Jin An
    • Journal of Convergence Korean Medicine
    • /
    • v.2 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • Objectives: Atopic dermatitis (AD) is an easily recurrent inflammatory skin disease. Since AD has complex pathology, people have been investigating it on different aspects with various experimental models. One of them is in vivo model which has spontaneously developed AD-like skin lesions by various inducers. Methods: In this study, two kinds of mouse species were applied in the experiment; BALB/c and C57BL/6 mice. We compared features among the animal species making AD mouse model with protein allergen, ovalbumin. AD-like skin lesions were induced by ovalbumin on two kinds of scheme and were evaluated with the histological results and size of spleen which is a critical immunological organ. Also, we measured the level of immunoglobulin E in serum. In addition, we investigated the results of ovalbumin induced-AD-like skin lesions along with obesity. Results and Conclusion: We evaluated weight of organs and thickness of epidermis. These results suggest the possibility of the appropriate in vivo experimental model for AD or the comorbidity with obesity.

Enhanced Efficacy of Human Brain-Derived Neural Stem Cells by Transplantation of Cell Aggregates in a Rat Model of Parkinson's Disease

  • Shin, Eun Sil;Hwang, Onyou;Hwang, Yu-Shik;Suh, Jun-Kyo Francis;Chun, Young Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.5
    • /
    • pp.383-389
    • /
    • 2014
  • Objective : Neural tissue transplantation has been a promising strategy for the treatment of Parkinson's disease (PD). However, transplantation has the disadvantages of low-cell survival and/or development of dyskinesia. Transplantation of cell aggregates has the potential to overcome these problems, because the cells can extend their axons into the host brain and establish synaptic connections with host neurons. In this present study, aggregates of human brain-derived neural stem cells (HB-NSC) were transplanted into a PD animal model and compared to previous report on transplantation of single-cell suspensions. Methods : Rats received an injection of 6-OHDA into the right medial forebrain bundle to generate the PD model and followed by injections of PBS only, or HB-NSC aggregates in PBS into the ipsilateral striatum. Behavioral tests, multitracer (2-deoxy-2-[$^{18}F$]-fluoro-D-glucose ([$^{18}F$]-FDG) and [$^{18}F$]-N-(3-fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl)nortropane ([$^{18}F$]-FP-CIT) microPET scans, as well as immunohistochemical (IHC) and immunofluorescent (IF) staining were conducted to evaluate the results. Results : The stepping test showed significant improvement of contralateral forelimb control in the HB-NSC group from 6-10 weeks compared to the control group (p<0.05). [$^{18}F$]-FP-CIT microPET at 10 weeks posttransplantation demonstrated a significant increase in uptake in the HB-NSC group compared to pretransplantation (p<0.05). In IHC and IF staining, tyrosine hydroxylase and human ${\beta}2$ microglobulin (a human cell marker) positive cells were visualized at the transplant site. Conclusion : These results suggest that the HB-NSC aggregates can survive in the striatum and exert therapeutic effects in a PD model by secreting dopamine.

Characterization of a Mucolipidosis Type II Mouse Model and Therapeutic Implication of Lysosomal Enzyme Enriched Fraction Derived from Placenta (뮤코지방증 2형 마우스 모델의 특징과 태반에서 추출한 리소좀 효소 투여의 결과)

  • Cho, Sung Yoon;Kim, Ki-Yong;Kim, Su Jin;Sohn, Young Bae;Maeng, Se Hyun;Kim, Chi Hwa;Ko, Ah-Ra;Song, Junghan;Yeau, Sung-Hee;Kim, Kyung-Hyo;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.1
    • /
    • pp.5-13
    • /
    • 2012
  • I-cell disease (mucolipidosis type II; MIM 252500) and pseudo-Hurler polydystrophy (mucolipidosis type III; MIM 252600) are disorders caused by abnormal lysosomal transport in cells. The presence of numerous inclusion bodies in the cytoplasm of fibroblasts, a lack of mucopolysacchariduria, increased lysosomal enzyme activity in serum, and decreased GlcNAc-phosphotransferase activity are hallmark. Here, we attempted to investigate phenotypical and biochemical characteristics of the knockoutmouse of GlcNAc-phosphotransferase ${\alpha}/{\beta}$ subunits; in addition, we also attempted to determine whether the lysosome enriched fraction derived from placenta can be beneficial to phenotype and biochemistry of the knockout mouse.We found that the knockout mouse failed to thrive and had low bone density, as is the case in human. In addition, skin fibroblasts from the animal had the same biochemical characteristics, including increased lysosomal enzyme activity in the culture media, in contrast to the relatively low enzyme activity within the cells. Intravenous injection of the lysosome rich fraction derived from placenta into the tail vein of the animal resulted in a gain of weight, while saline injected animals didn't.In conclusion, our study demonstrated the phenotypical and biochemical similarities of the knockout mouse to a mucolipidosis type II patient and showed the therapeutic potential of the lysosome enriched fraction. We admit that a larger scale animal study will be needed; however, the disease model and the therapeutic potential of the lysosome enriched fraction will highlight the hope for a novel treatment approach to mucopolipidosis type II, for which no therapeutic modality is available.

  • PDF

Increased expression of galectin-9 in experimental autoimmune encephalomyelitis (실험적 자가면역성 뇌척수염을 유도한 마우스에서 Galectin-9의 과발현)

  • Cho, Jinhee;Bing, So Jin;Kim, Areum;Yu, Hak Sun;Lim, Yoon-Kyu;Shin, Taekyun;Choi, Jonghee;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.4
    • /
    • pp.209-218
    • /
    • 2014
  • Experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), reflects pathophysiologic steps in MS such as the influence of T cells and antibodies reactive to the myelin sheath, and the cytotoxic effect of cytokines. Galectin-9 (Gal-9) is a member of animal lectins that plays an essential role in various biological functions. The expression of Gal-9 is significantly enhanced in MS lesions; however, its role in autoimmune disease has not been fully elucidated. To identify the role of Gal-9 in EAE, we measured changes in mRNA and protein expression of Gal-9 as EAE progressed. Expression increased with disease progression, with a sharp rise occurring at its peak. Gal-9 immunoreactivity was mainly expressed in astrocytes and microglia of the central nervous system (CNS) and macrophages of spleen. Flow cytometric analysis revealed that $Gal-9^+CD11b^+$ cells were dramatically increased in the spleen at the peak of disease. Increased expression of tumor necrosis factor (TNF)-R1 and p-Jun N-terminal kinase (JNK) was observed in the CNS of EAE mice, suggesting that TNF-R1 and p-JNK might be key regulators contributing to the expression of Gal-9 during EAE. These results suggest that identification of the relationship between Gal-9 and EAE progression is critical for better understanding Gal-9 biology in autoimmune disease.