• Title/Summary/Keyword: Anhydrous condition

Search Result 25, Processing Time 0.019 seconds

The effect of calcium metaphosphate bone graft materials on bone regeneration (생분해성 Calcium Metaphosphate골이식재의 골조직재생효과에 관한 연구)

  • Chae, Han-seung;Lee, Yong-Moo;Yang, Seung-Min;Chun, Sung-Soo;Kim, Suk-Young;Ku, Young;Choung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.1
    • /
    • pp.13-26
    • /
    • 2003
  • Periodontal regeneration therapy with bone-substituting materials has gained favorable clinical efficacy by enhancing osseous regeneration in periodontal bony defect. As bone-substituting materials, bone powder, calcium phosphate ceramic, modified forms of hydroxyapatite, and hard tissue replacement polymer have demonstrated their periodontal bony regenerative potency. Bone-substituting materials should fulfill several requirements such as biocompatibility, osteogenecity, malleability, biodegradability. The purpose of this study was to investigate biocompatibility, osteo-conduction capacity and biodegradability of $Na_2O$, $K_2O$ added calcium metaphosphate(CMP). Beta CMP was obtained by thermal treatment of anhydrous $Ca_2(H_2PO_4)_2$. $Na_2O$ and $K_2O$ were added to CMP. The change of weight of pure CMP, $Na_2O$-CMP, and $K_2O$-CMP in Tris-buffer solution and simulated body fluid for 30 days was measured. Twenty four Newzealand white rabbits were used in negative control, positive control(Bio-Oss), pure CMP group, 5% $Na_2$-CMP group, 10% $Na_2O$-CMP goup, and 5% $K_2O$-CMP group. In each group, graft materials were placed in right and left parietal bone defects(diameter 10mm) of rabbit. The animals were sacrificed at 3 months and 6 months after implantation of the graft materials. Degree of biodegradability of $K_2O$ or $Na_2O$ added CMP was greater than that of pure CMP in experimental condition. All experimental sites were healed with no clinical evidence of inflammatory response to all CMP implants. Histologic observations revealed that all CMP grafts were very biocompatible and osseous conductive, and that in $K_2O$-CMP or $Na_2O$-CMP implanted sites, there was biodegradable pattern, and that in site of new bone formation, there was no significant difference between all CMP group and DPBB(Bio-Oss) group. From this result, it was suggested that all experimental CMP group graft materials were able to use as an available bone substitution.

The Synthesis and Evaluation of Antihypertensive 4-(${\beta}$-Guanidinoethyl)-17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol (혈압강하제인 4-${\beta}$-Guanidinoethyl)-17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol의 합성 및 평가)

  • Jack C. Kim;Lee Euk-suk;Charles C. Chang;Norman J. Doorenbos
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.174-178
    • /
    • 1975
  • The intermediate, 17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol(Ⅸ) required for the synthesis of 4-(${\beta}$-guanidinoethyl)-17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol(V) was obtained through a reaction of 17${\alpha}$-methyl-3,5-seco-4-norandrostan-17${\beta}$-ol-5-on-3-oic acid(VI) with ammonium hydroxide followed by two reductions(platinum dioxide with hydrogen and lithium aluminium hydride). Condensation of Ⅸ with chloroacetonitrile under anhydrous condition, followed by reduction of the nitrile with lithium aluminium hydride gave 4-(${\beta}$-aminoethyl)-17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol(XI). The reaction of XI with 2-methyl-2-thiopseudourea or 3,5-dimethylpyrazole-1-carboxamidine, or cyanamide provided the title compound, V. Relaxation of the nictitating membrane, in the absence of mydriasis, is considered to be evidence of adrenergic neurone blockade. Thus the test compound(V) resembles that of the classical adrenergic neurone blocking agents.

  • PDF

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.

A study on the antioxidant activity of products of caramel-type-browning reaction (Caramel 갈색화 반응 생성물의 항산화성에 관한 연구)

  • 신민자;안명수
    • Korean journal of food and cookery science
    • /
    • v.16 no.6
    • /
    • pp.629-639
    • /
    • 2000
  • The study was carried out to compare the antioxidant activities of products from caramel-type-browning reaction of xylose(XY), glucose(GL), sucrose(SU), glucose + citric acid (GLCA), glucose + sodium citrate(GLSC), glucose + glycine(GLGC) heated at 80, 120 or 140$^{\circ}C$ for 24 hr. 1. The hydrogen donating ability (HDA) of browning reaction products was generally enhanced as the browning temperature and time increased. The HDAs of the browning reaction products heated at 80$^{\circ}C$ for 24 hr were in the order of GLSC (0.387) > GLSC (0.362) > GLCA (0.301) > GL (0.299) > XY (0.290) > SU (0.281). But they were in the order of GLSC (0.543) > SU (0.328) > GL (0.309) > GLGC (0.325) > XY (0.298) > GLCA (0.275) under the condition of heating at 140$^{\circ}C$ for 24 hr. 2. The antioxidant activities of the anhydrous ethanol extracts of the browning mixtures were inferior to that of TBHQ as measured in com oil, but SU was superior to tocopherol in its antioxidant activity. All the browning mixtures showed antioxidant activities when heated at 80$^{\circ}C$; however, only SU and GLCA showed the activites at 120 or 140$^{\circ}C$. And the antioxidant activity of the SU extract was higher than that of TOCO. The antioxidant activities of the ethanol extracts were in the order of TBHQ > GLCA > GLGC > TOCO > SU > XY > GL > GLSC > control at 80$^{\circ}C$, TBHQ > SU > TOCO > GLCA > control > GLSC> XY > GL > GLGC at 120$^{\circ}C$, and TBHQ > SU > TOCO > GLCA > control > GLSC > GLGC > XY > GL at 140$^{\circ}C$.

  • PDF

Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment (금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경)

  • Choi, Seon-Gyu;Park, Jung-Woo;Seo, Ji-Eun;Kim, Chang-Seong;Shin, Jong-Ki;Kim, Nam-Hyuck;Yoo, In-Kol;Lee, Ji-Yun;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.1-14
    • /
    • 2007
  • The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).