• Title/Summary/Keyword: Angular speed

Search Result 458, Processing Time 0.024 seconds

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Shim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.685-688
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

STABILITY OF A ROTATING BALL

  • Bykov, V.;Dementiev, O.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.277-288
    • /
    • 2002
  • Influence of form errors of a chamber filled with a liquid on the movement and stability of a ball, rotating in the chamber, is studied. Two cases of the influence of the chamber form errors on the forces, acting on the ball, are defined. The first case describes the situation when limitations on the rotor shift are not imposed and disturbances of the chamber form are set by spherical harmonics not above the first order. In the second case disturbance of a chamber form is arbitrary and the rotor is supposed small. A rising here diflective moment tends to direct the angular speed vector along the small semiaxis of the ellipsoid, i.e., a stable position of the rotor appears.

Backward and forward rotating of FG ring support cylindrical shells

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Naeem, Muhammad Nawaz;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.137-150
    • /
    • 2020
  • In this research work, the analytical rotating vibration for functionally graded shell with ring supports are restricted to some volume fraction laws based on Rayleigh-Ritz technique. The frequencies of functionally grade cylindrical shells have been investigated for the distribution of material composition of material with two kinds of material. Stability of a cylindrical shell depends highly on these aspects of material with ring supports. The frequency behavior is investigated with fraction laws versus circumferential wave number, length-to-radius and height-to-radius ratios. The frequencies are higher for higher values of circumferential wave number. The frequency first increases and gain maximum value with the increase of circumferential wave mode. Moreover, the effect of angular speed is also investigated. It is examined that the backward and forward frequencies increases and decreases on increasing the ratio of height- and length-to-radius ratios.

Stress analysis of rotating annular hyperbolic discs obeying a pressure-dependent yield criterion

  • Jeong, Woncheol;Chung, Kwansoo
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.689-705
    • /
    • 2016
  • The Drucker-Prager yield criterion is combined with an equilibrium equation to provide the elastic-plastic stress distribution within rotating annular hyperbolic discs and the residual stress distribution when the angular speed becomes zero. It is verified that unloading is purely elastic for the range of parameters used in the present study. A numerical technique is only necessary to solve an ordinary differential equation. The primary objective of this paper is to examine the effect of the parameter that controls the deviation of the Drucker-Prager yield criterion from the von Mises yield criterion and the geometric parameter that controls the profile of hyperbolic discs on the stress distribution at loading and the residual stress distribution.

A study on the thermal deformation characteristics of steel plates due to multi-line heating

  • Lee, Joo-Sung;Lee, Sang-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.48-59
    • /
    • 2018
  • This paper is mainly concerned with developing the formulae of predicting thermal deformation of steel plate due to multi-line heating. By investigating the results of line heating test and numerical analysis, reasonable heat flux model has been defined. Formulae of predicting the transverse shrinkage and the angular distortion as the dominant thermal deformation types in plate forming by line heating have been derived based on the results of line heating test and numerical analysis with varying plate thickness, heating speed and distance between torches. This paper illustrates how the derived formulae are used in investigating the effect of multi-line heating upon the thermal deformation and how they can be used in defining the limit distance with that there is no interacted effect between torches. This paper ends with describing the extension of the present study.

Fabrication of vertical Hall sensor for detecting three phases magnetic field (3상의 자계 검출을 위한 수직 Hall 센서의 제작)

  • Lee, Ji-Yeon;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.85-90
    • /
    • 2005
  • In this study, we have fabricated a three branches vertical Hall sensor for detecting three phases rotation informations of miniaturized brushless motor. The sensor gives three position signals phase shifted by $120^{\circ}$, corresponding to the motor driving signals. The branch has one Hall output and one input each other. The central part acts as common driving input. Sensor has branch width of $150{\mu}m$ and distance from central electrode to Hall electrode of $100{\mu}m$. The sensitivity of sensor is 250 V/$A{\cdot}T$ at magnetic field of 0.1 T. It has also showed three sine waves of Hall voltages with $120^{\circ}$ phase over a $360^{\circ}$ rotation. A packaged sensing part are $2{\times}2mm^{2}$ and has been successfully tested on a motor rotation at a speed up to 60,000 rpm.

A Study on indirect Vector Control of Induction motors using TMS320F240 (TMS320F240을 이용한 유도전동기의 간접 벡터제어에 관한 연구)

  • Yun, Hong-Min;Kim, Yong;Baek, Soo-Hyun;Lee, Seung-Il;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.372-374
    • /
    • 2000
  • This paper presents a study on the indirect FOC (field oriented control) of induction motor using TMS320F240. This DSP has become possible to design and implement a highly efficient and accurate AC induction drive control. This paper describes a pulse width modulator based on the voltage space vectors technique that accepts voltage demands in dq coordinates and generates three-phase PWM waveforms to drive a variable frequency voltage-source inverter. The Current Model lock is added to generate the rotor flux angular speed.

  • PDF

New Adaptive Linear Combination Structure for Tracking/Estimating Phasor and Frequency of Power System

  • Wattanasakpubal, Choowong;Bunyagul, Teratum
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.28-35
    • /
    • 2010
  • This paper presents new Adaptive Linear Combination Structure (ADALINE) for tracking/estimating voltage-current phasor and frequency of power system. To estimate the phasors and frequency from sampled data, the algorithm assumes that orthogonal coefficients and speed of angular frequency of power system are unknown parameters. With adequate sampled data, the estimation problem can be considered as a linear weighted least squares (LMS) problem. In addition to determining the phasors (orthogonal coefficients), the procedure estimates the power system frequency. The main algorithm is verified through a computer simulation and data from field. The proposed algorithm is tested with transient and dynamic behaviors during power swing, a step change of frequency upon islanding of small generators and disconnection of load. The algorithm shows a very high accuracy, robustness, fast response time and adaptive performance over a wide range of frequency, from 10 to 2000 Hz.

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Kim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.365-368
    • /
    • 1998
  • In this research project two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

Ellipsometric Characterization of Rubbed Polyimide Alignment Layer in Relation with Distribution of Liquid Crystal Molecules in Twisted Nematic Cell

  • Cho, Sung Yong;Park, Sang Uk;Yang, Sung Mo;Kim, Sang Youl
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.185-194
    • /
    • 2018
  • Ultra-small optical anisotropy of a rubbed polyimide (PI) alignment layer is quantitatively characterized using the improved reflection ellipsometer. Twisted nematic (TN) cells are fabricated using the rubbed PIs of known surface anisotropy as alignment layers. Distribution of liquid crystal (LC) molecules in the TN cell is characterized using transmission ellipsometry. The retardation of the rubbed PI surface increases as rubbing strength increases. The tilt angle of the optic axis of the rubbed PI surface decreases as rubbing strength especially as the angular speed of the rubbing roller increases. Pretilt angle of LC molecules in the TN cell shows strong correlation with tilt angle of the optic axis of the rubbed PI surface. Both the apparent order parameter and the effective twist angle of the LC molecules in the TN cell decrease as the pretilt angle of LC molecules increases.