• Title/Summary/Keyword: Angular flux

Search Result 106, Processing Time 0.021 seconds

Modeling and Simulation of A High Performance Vector Controlled Induction Motor Drive (고성능 벡터제어 유도기 구동장치의 모델링과 시뮬레이션)

  • Kim, Jong-Ku;Choi, Uk-Don;Son, Jin-Geun;Lee, Jong-Chan;Kim, Jin-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.366-368
    • /
    • 1994
  • This paper deals with the vector control that control of torque and speed of the induction motor using field-oriented control method. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are caculated from rotor angular velocity and stator current. Through modeling and digital simulation with a voltage source inverter, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

Adaptive Input-Output Control of Induction Motor for Type of $\pi$ Modeling Consider Magnetic Saturation (자기포화를 고려한 $\pi$형 모델 유도기의 적응 선형화 기법 제어)

  • Kim Do-Woo;Jung Gi-Chul;Lee Seng-Hak;Kim Hong-Phil
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.697-702
    • /
    • 2004
  • In this paper, we proposed that the problem of controlling induction motor with magnetic saturation, is studied from an input-output feedback linearization with adaptive algorithm. is considered. An adaptive input-output feedback linearizing controller is considered under the assumption of known motor parameters and unknown load torque. In order to achieve the speed regulation with the consideration of improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. Simulation results are provided for illustration.

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

On the Controlled-spin Intensity Method For the Tangentially-fired Furnaces

  • Shifa Ding;Jianghong Kuang;Pingyuan Liu;Chaosong Chen;Xingsheng Hu;Handing Cao;Jinyuan Xu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.213-216
    • /
    • 2003
  • This paper put forward the controlled spin intensity method for the tangentially-fired furnaces to solve the problems existed in the counter-tangential operation. The numerical simulation was used in this paper to discuss some basic principles.

  • PDF

Speed Sensorless Torque Monitoring of Induction Spindle Motor using Graphical Programming (그래픽 프로그래밍 기법을 이용한 주축용 유도전동기의 속도 센서리스 토크감시)

  • Park, Jin-U;Gwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.107-113
    • /
    • 2002
  • To monitor the torque of an induction motor using current, rotating speed has been measured and used to calculate the slip angular velocity. Additional sensor, however, can cause extra expense and trouble. In this paper, a new algorithm is proposed to monitor the torque of vector controlled induction motor without any speed measuring sensor. Only stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm and to monitor the torque of an induction motor in real time. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. From several experiments, the proposed method shows a good estimation of the motor torque under the normal rotational speed.

Static and Dynamic Analysis Axial Flux Reluctance Motor Considering nonliearity (비선형을 고려한 축방향 릴럭턴스 전동기의 정.동특성 해석)

  • Kim, Kyung-Ho;Yu, Sun-Ki;Cho, Yun-Hyun;Kang, Do-Hyun;Kim, Jong-Mu;Jeong, Yen-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.12-14
    • /
    • 1999
  • The paper is described about the characteristics analysis of Axial Fluk Reluctance Motor(AFRM) with nonlinear analytical modeling. The parameter of the modeling is computed by the finite element method as functions of input current and angular displacement. To investigate the dynamic characteristics of AFRM, the current, torque, back EMF and output power wave is simulated from the motion equation by MATLAB/Simulink.

  • PDF

Mass Transfer Experiments for the Heat Load During In-Vessel Retention of Core Melt

  • Park, Hae-Kyun;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.906-914
    • /
    • 2016
  • We investigated the heat load imposed on the lower head of a reactor vessel by the natural convection of the oxide pool in a severe accident. Mass transfer experiments using a $CuSO_4-H_2SO_4$ electroplating system were performed based on the analogy between heat and mass transfer. The $Ra^{\prime}_H$ of $10^{14}$ order was achieved with a facility height of only 0.1 m. Three different volumetric heat sources were compared; two had identical configurations to those previously reported, and the other was designed by the authors. The measured Nu's of the lower head were about 30% lower than those previously reported. The measured angular heat flux ratios were similar to those reported in existing studies except for the peaks appearing near the top. The volumetric heat sources did not affect the Nu of the lower head but affected the Nu of the top plate by obstructing the rising flow from the bottom.

Dynamic Characteristics Analysis of Claw Pole PM Type Step Motor (Claw Pole 영구자석형 스텝모터의 동특성 해석)

  • Gong, Jeong-Sik;Kim, Jong-Cheol;O, Cheol-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.597-603
    • /
    • 1999
  • Due to its simple construction, operation steadiness and low cost, claw pole step motor is widely used for OA machine and automobile. This paper deals with analysis fo claw pole motor, especially eyeing to dynamic characteristics. To analyze dynamic characteristics of claw pole step motor, torque development in each angular step of rotor are surveyed and torque equation is drived using permeance method. To adopt the airgap MMF, the magnetic equivalent circuit of the motor is introduced. On the base of the magnetic equivalent circuit, the air gap flux equation is derived. To get a optimum design of the motor, the torque characteristic is studied in variation of coil data and remanence value of permanent magnetic material.

  • PDF

A study on the thermal deformation characteristics of steel plates due to multi-line heating

  • Lee, Joo-Sung;Lee, Sang-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.48-59
    • /
    • 2018
  • This paper is mainly concerned with developing the formulae of predicting thermal deformation of steel plate due to multi-line heating. By investigating the results of line heating test and numerical analysis, reasonable heat flux model has been defined. Formulae of predicting the transverse shrinkage and the angular distortion as the dominant thermal deformation types in plate forming by line heating have been derived based on the results of line heating test and numerical analysis with varying plate thickness, heating speed and distance between torches. This paper illustrates how the derived formulae are used in investigating the effect of multi-line heating upon the thermal deformation and how they can be used in defining the limit distance with that there is no interacted effect between torches. This paper ends with describing the extension of the present study.

Analysis of Estimation Errors in Rotor Position for a Sensorless Control System Using a PMSM

  • Park, Yong-Soon;Sul, Seung-Ki;Ji, Jun-Keun;Park, Young-Jae
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.748-757
    • /
    • 2012
  • In a sensorless control system with a Permanent Magnet Synchronous Motor (PMSM), the angular position of the rotor flux can be estimated by a voltage equation. However, the estimated angle may be inaccurate due to various causes. In this paper, it was comprehensively analyzed how various causes affect the angle error. As a result of the analysis, an error equation intuitively describing these relationships was derived. The parameter errors of a PMSM and the non-ideal properties of the driving system were identified as error-causing factors. To demonstrate the validity of the error equation, PMSMs were tested at various operating points. The variations in angle errors could be well explained with the error equation.