• Title/Summary/Keyword: Angular error

Search Result 316, Processing Time 0.032 seconds

Study on Volumetric Accuracy of a CMM using step guage measurement (스텝게이지를 이용한 3차원 측정기의 입체오차 측정에 관한 연구)

  • 박희재;문준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.312-318
    • /
    • 1993
  • This paper presents an useful technique for error assessment of CMM with simple gauges such as step gauge. A computer module for measurement path generation is implemented,where the appropriate measurement sequences are generated in terms of DMIS file format for CMMs of CNC mode. After the CNC codes are downloaded into CMMs, the measurement operations are performed, and the error analysis are followed. Positional errors, angular errors are successfully measured with high precision along the 3 axis in relatively short time. The squareness error is also assessed with the step gauge measurement data. The developed system has been practically applied, and showed good performance.

  • PDF

Design, manufacture and analysis of gear train with composition of optimum gear ratio (최적 기어비 구현을 통한 치차열의 설계, 제작 및 분석)

  • 정상목;윤재윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.132-138
    • /
    • 1999
  • This paper addresses an analytical approach to the mechanical error analysis of gear train and tolerance design and manufacture of gear train in restricted space considering motor driving torque, driving system inertia, motor acceleration, motor rotor inertia and friction torque. The gear train is designed to have optimum gear ratio in restricted space and each gear is manufactured to have the lowest weight and each gear tooth is heat-treated to have robustness. Based on the small difference between the mechanical error analysis and measurement, gear train design with optimum gear ratio and restricted space and robustness is proposed

  • PDF

고속 CNC선반 이송계의 열변형 오차 해석

  • 윤원수;김수광;하재룡;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.263-268
    • /
    • 1997
  • Development of a high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of tool change time as well as repid travel time can enhance the productivity. However,the high speed feed drive system generates more heat in nature,which leads to thermal expansion that has adverse effects on the accuracy of machined part. The paper divides the feed drive system into the ball screw and guide way. For each part, the thermal behvior model is separtately developed to estimate the position error of the respective feed drive system that is caused by the thermal expansion. The modified lumped capacitance method is used to analyze the linear position error of the ball screw. The thermal deformation of guide way parts affects the straightness and angular error as well as linear position error. Finite element method is used to estimate the thermal behavior of these guide way parts. The effectiveness of the proposed models are verified through the experiments using laser interferometer.

Transmission Error Analyis of Spur Gear Trains with Tolerances (기어의 공차에 따른 스퍼 기어열의 전달 오차 해석)

  • Han, Hyung Suk;Kim, Tae Young;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.90-100
    • /
    • 1997
  • Sppur gear trains are used widely in high precision machines because gear trains have an advantage of exact transmission of angular velocity. Especially, gear trains are used in high quali8ty photocopying and photography OA machines. In general, gears have errors in manufacturing and assembling process and the errors are limited by tolerances. As the result, the tolerances cause the performance error. Therfore, it is important to predict transmission error caused by the tolerances for the tolerance design. Earlier tolerance design methods use mainly experimental and geometrical techniques. In this paper, a method for gear train analysis with tolerance is proposed. Because the method uses dynamic contacts, it is possible to consider irregularities and assemble errors of gears. In addition, the method can predit dynamic loads on the teeth of gears.

  • PDF

Improvement of Motion Accuracy Using Transfer Function in Linear Motion Bearing Guide (전달함수를 이용한 직선베어링 안내면의 운동정밀도 향상)

  • Kim, Kyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.77-85
    • /
    • 2002
  • An analysis method which calculates corrective machining information for improving the motion accuracy of linear motion guide Is proposed in this paper. The method is composed of two algorithms. One is the algorithm fur prediction of the motion errors from rail form error. The other is the algorithm for prediction of rail form error from the motion errors of table. Transfer function is utilized in each algorithm, which represents the ratio of bearing reaction force variation to unit magnitude of spatial frequencies of raid from error. As the corrective machining information is acquired from the measured motion errors of table, the method has a merit not to measure rail form error directly. Validity of the method is verified both theoretically and experimentally. By applying the method, linear motion error of test equipment is reduced from 5.97$\mu$m to 0.58$\mu$m, and reduced from 32.78arcsec to 6.21 arcsec in case of angular motion error. From the results, it is confirmed that the method is very effective to improve the motion accuracy of linear motion guide.

Illumination Estimation Based on Nonnegative Matrix Factorization with Dominant Chromaticity Analysis (주색도 분석을 적용한 비음수 행렬 분해 기반의 광원 추정)

  • Lee, Ji-Heon;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.89-96
    • /
    • 2015
  • Human visual system has chromatic adaptation to determine the color of an object regardless of illumination, whereas digital camera records illumination and reflectance together, giving the color appearance of the scene varied under different illumination. NMFsc(nonnegative matrix factorization with sparseness constraint) was recently introduced to estimate original object color by using sparseness constraint. In NMFsc, low sparseness constraint is used to estimate illumination and high sparseness constraint is used to estimate reflectance. However, NMFsc has an illumination estimation error for images with large uniform area, which is considered as dominant chromaticity. To overcome the defects of NMFsc, illumination estimation via nonnegative matrix factorization with dominant chromaticity image is proposed. First, image is converted to chromaticity color space and analyzed by chromaticity histogram. Chromaticity histogram segments the original image into similar chromaticity images. A segmented region with the lowest standard deviation is determined as dominant chromaticity region. Next, dominant chromaticity is removed in the original image. Then, illumination estimation using nonnegative matrix factorization is performed on the image without dominant chromaticity. To evaluate the proposed method, experimental results are analyzed by average angular error in the real world dataset and it has shown that the proposed method with 5.5 average angular error achieve better illuminant estimation over the previous method with 5.7 average angular error.

An Algorithm for Detecting Linear Velocity and Angular Velocity for Improve Convenience of Assistive Walking System (보행보조시스템의 조작 편리성 향상을 위한 사용자의 선속도 및 회전각속도 검출 알고리즘)

  • Kim, Byeong-Cheol;Lee, Won-Young;Eom, Su-Hong;Jang, Mun-Seok;Kim, Pyeong-Su;Lee, Eung-Hyuk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.321-328
    • /
    • 2016
  • In this paper, we propose a walk status method which can be fused with conventional walk intention method to improve convenience of an electric assistive walking system for elder people with restricted walking capabilities. The system uses a handlebar as a trigger and regards grabbing a handlebar as expressing will to walk. And the system uses a user's linear velocity and angular velocity as linear velocity and angular velocity of a system, checked by laser range finder. To achieve this, we propose a method to find a virtual central point of a human body by estimating a central point between two legs. The experiments are carried out by comparing user's linear velocity and angular velocity, and system's linear velocity and angular velocity. The results show that the error of linear velocity and angular velocity between a user and a system are 1% and 2.77%, which means the linear velocity and angular velocity of a user can be applied to a system. And it is confirmed that the proposed fusion method can prevent a user from being dragged by an assistive walking system or a malfunction caused by lack of experience

Development and performance test of a complex laser interferometer for simultaneously measuring displacement and 2-D angles (변위 각도 동시 측정용 복합 레이저 간섭계의 제작과 특성 분석)

  • Kim J.W.;Kim J.A.;Kang C.S.;Eom T.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.573-576
    • /
    • 2005
  • A compact linear and angular displacement measurement device was developed by combining a Michelson interferometer and an autocollimator to characterize the movement of a precision stage. A Michelson interferometer and an autocollimator are typical devices for measuring linear and angular displacement, respectively. By controlling the polarization of reflected beam from the target mirror of the interferometer, some part of light was retro-reflected to the light source and the reflected beam was used for angle measurement. The interferometer and the autocollimator use the same optic axis and the target mirror can be easily and precisely aligned orthogonal to the optic axis by monitoring the autocollimator s signal. The autocollimator was designed for angular resolution of 0.1 arcsec and dynamic range of 60 arcsec. The nonlinearity error of interferometer was minimized by trimming the gain and offset of the photodiode signals. Through the experiments, we evaluate the performance of measurement device and discuss its applications.

  • PDF

Practical Pinch Torque Detection Algorithm for Anti-Pinch Window Control System Application

  • Lee, Hye-Jin;Ra, Won-Sang;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2526-2531
    • /
    • 2005
  • A practical pinch torque estimator based on the Kalman filter is proposed for low-cost anti-pinch window control systems. To obtain the accurate angular velocity from Hall-effect sensor measurements, the angular velocity calculation algorithm is executed with additional procedures for removing the measurement noises. Apart from the previous works using the angular velocity estimates and torque estimates for detecting the pinched condition, the torque rate is augmented to the system model and the proposed pinch estimator is derived by applying the steady-state Kalman filter recursion to the model. The motivation of this approach comes from the idea that the bias errors in torque estimates due to the motor parameter uncertainties can be almost eliminated by introducing the torque rate state. For detecting the pinched condition, a systematic way to determine the threshold level of the torque rate estimates is also suggested via the deterministic estimation error analysis. Simulation results are given to certify the pinch detection performance of the proposed algorithm and its robustness against the motor parameter uncertainties.

  • PDF

Synthetic Aperture Processing in Beamspace Using Twin-line Array (이중 선 배열을 이용한 빔 영역 합성 처리)

  • 양인식;김기만;윤대희;오원천;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.82-86
    • /
    • 2001
  • In this Paper, we Propose synthetic aperture technique for twin-line may. Sin91e-line way is required long aperture size in order to achieve high SNR and angular resolution in shallow water Ultra low frequency signal from far-field has left-right ambiguity at sing1e-line array. To resolve these Problems, we'd like to adopt the synthetic aperture technique to twin-line array. The synthetic aperture method adopts coherent processing of sub-aperture signals at successive tine intervals in the beam domain. The proposed method shows low nile error and improved angular resolution. In simulation result, average sidelobe level is reduced about 7〔dB〕when the array Peformed 5-synthesis.

  • PDF