• Title/Summary/Keyword: Angular error

Search Result 313, Processing Time 0.032 seconds

Measurement and Analysis for Positioning Control Characteristics using Encoder Signal of NC Machine Controller (공작기계용 NC제어기의 엔코더 신호를 이용한 위치제어 특성 측정 및 분석)

  • Kim Jong-Gil;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.311-317
    • /
    • 2005
  • NC controller parameters are fixed when the controller is combined with a machine. However, the characteristics of controller could be changed as it has being used by the machine or other environmental conditions. Ultimately, it results in tool positioning accuracy changing. The loading torque in servo motor also influences on the positioning accuracy. This study focus on a measuring and analysing method for verifying the angular positioning accuracy of NC servo motor. We used a high resolution A/D converter for acquiring analogue signal of rotary encoder in servo motor. Generating tool path by the combination of axial movements (X,Y,Z) is compared with the encoder signals with the servo motor torque. The current variation signal is also read from the servo motor power using a hall sensor and converted to the motor torque. The method of analysing proposed in this study will be used for determining the gains (tuning) of parameter in NC controller, when the controller is set up at a machine initially or the controller condition is changed during the work.

Self-localization of a Mobile Robot for Decreasing the Error and VRML Image Overlay (오차 감소를 위한 이동로봇 Self-Localization과 VRML 영상오버레이 기법)

  • Kwon Bang-Hyun;Shon Eun-Ho;Kim Young-Chul;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.389-394
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localization technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (I): Development of the Automatic Powerflow Generation Module (요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (I): 동력흐름 자동생성 모듈 개발)

  • 이승종;서정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • In this paper, the element combination algorithm for designing an arbitrary type of the automatic transmissions is proposed. The powertrain simulation software using this algorithm is then developed. The deliveries of the angular velocities and torques are only considered for the motion characteristics of the automatic transmissions. The effects of the vibration and noise are not considered. The automatic transmission is defined by the basic elements, i.e., planetary gear set, clutch, brake, shaft, general gear, and inertia. The transmission system is defined by the combination of these elements. The element combination matrices automatically generate the equations of motion for each shift. The self error-correcting algorithm is also developed to verify the element combination algorithm. This automotive powertrain simulation/design software with user-friendly graphic user interface has two main modules. The first module, the automatic powerflow generation module, mainly consists of the automatic powerflow and component generation algorithms. This paper covers the theory and application for the first module. The second module deals with the automatic system generation algorithm and will be discussed in the second paper.

Head tracking system using image processing (영상처리를 이용한 머리의 움직임 추적 시스템)

  • 박경수;임창주;반영환;장필식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 1997
  • This paper is concerned with the development and evaluation of the camera calibration method for a real-time head tracking system. Tracking of head movements is important in the design of an eye-controlled human/computer interface and the area of virtual environment. We proposed a video-based head tracking system. A camera was mounted on the subject's head and it took the front view containing eight 3-dimensional reference points(passive retr0-reflecting markers) fixed at the known position(computer monitor). The reference points were captured by image processing board. These points were used to calculate the position (3-dimensional) and orientation of the camera. A suitable camera calibration method for providing accurate extrinsic camera parameters was proposed. The method has three steps. In the first step, the image center was calibrated using the method of varying focal length. In the second step, the focal length and the scale factor were calibrated from the Direct Linear Transformation (DLT) matrix obtained from the known position and orientation of the camera. In the third step, the position and orientation of the camera was calculated from the DLT matrix, using the calibrated intrinsic camera parameters. Experimental results showed that the average error of camera positions (3- dimensional) is about $0.53^{\circ}C$, the angular errors of camera orientations are less than $0.55^{\circ}C$and the data aquisition rate is about 10Hz. The results of this study can be applied to the tracking of head movements related to the eye-controlled human/computer interface and the virtual environment.

  • PDF

Complex Vector Current Control of Grid Connected Inverter Robust for Inductance Variation (인덕턴스 변화에 강인한 계통연계형 인버터의 복소 벡터 전류제어기)

  • Lee, Taejin;Jo, Jongmin;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1648-1654
    • /
    • 2016
  • This paper analyzes complex vector current control for the enhanced cross-coupling compensation in accordance with parameter variation in grid-connected inverter system, and verifies through simulation and experiment. Complex vector current control is performed in the synchronous reference frame through d-q transformation. It generates cross-coupling components with rotating nominal angular frequency. In general, cross-coupling elements are compensated by decoupling terms added to output of conventional decoupling PI controller. But, it is impossible to compensate them perfectly which transient response is especially deteriorated such as large overshoot and slow tracking, when variation of grid impedance or measurement error occurs. However, complex vector current control can improve stability and response characteristic of current control regardless of the situation as before. Decoupling controller and complex vector controller are represented through complex forms, and these controllers are analyzed by using frequency response in s-domain, respectively. It is verified that complex vector controller has more superior response characteristic than decoupling controller through MATALB, PSIM and experimental in 5kW grid-connected inverter when L filter parameter is varied from 1.1mH to increase double, 2.2mH.

Improved Sensorless Control of Induction motor by Rotor Resistance Compensation (슬립각속도를 사용하는 회전자 저항 보정에 의한 유도전동기의 센서리스 속도제어 개선)

  • Park, Kang-Hyo;Kwon, Young-Ahn
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.886-890
    • /
    • 2011
  • Induction motors are relatively cheap and rugged machines. For the vector control of induction motors, a position or speed sensor is needed. But a speed sensor increases motor cost and reduces reliability in harsh environment. Recently, many studies have been performed for sensorless speed control. This paper investigates an improved flux observer with the parameter error compensation for a sensorless induction motor. The proposed algorithm is verified through simulation and experiment.

Decoupling of the Secondary Saliencies in Sensorless PMSM Drives using Repetitive Control in the Angle Domain

  • Wu, Chun;Chen, Zhe;Qi, Rong;Kennel, Ralph
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1375-1386
    • /
    • 2016
  • To decouple the secondary saliencies in sensorless permanent magnet synchronous machine (PMSM) drives, a repetitive control (RC) in the angle domain is proposed. In this paper, the inductance model of a concentrated windings surface-mounted PMSM (cwSPMSM) with strong secondary saliencies is developed. Due to the secondary saliencies, the estimated position contains harmonic disturbances that are periodic relative to the angular position. Through a transformation from the time domain to the angle domain, these varying frequency disturbances can be treated as constant periodic disturbances. The proposed angle-domain RC is plugged into an existing phase-locked loop (PLL) and utilizes the error of the PLL to generate signals to suppress these periodic disturbances. A stability analysis and parameter design guidelines of the RC are addressed in detail. Finally, the proposed method is carried out on a cwSPMSM drive test-bench. The effectiveness and accuracy are verified by experimental results.

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Inertial Sensor Aided Motion Deblurring for Strapdown Image Seekers (관성센서를 이용한 스트랩다운 탐색기 훼손영상 복원기법)

  • Kim, Ki-Seung;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • This paper proposes a practical linear recursive robust motion deblurring filter using the inertial sensor measurements for strapdown image seekers. The angular rate information obtained from the gyro mounted on the missile is used to define the PSF(point spread function). Since the gyro output contains a unknown but bounded bias error. the motion blur image model can be expressed as the linear uncertain system. In consequence, the motion deblurring problem can be cast into the robust Kalman filtering which provides reliable state estimates even in the presence of the parametric uncertainty due to the gyro bias. Through the computer simulations using the actual IR scenes, it is verified that the proposed algorithm guarantees the robust motion deblurring performance.

Guidance Law to Control Impact-Time-And-Angle Using Time-Varying Gains (시변 이득을 이용한 비행시간 및 충돌각 제어 유도법칙)

  • Lee, Jin-Ik;Jeon, In-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.633-639
    • /
    • 2007
  • This paper presents a new homing guidance law based on well-known BPN to achieve an impact time constraint as well as an impact angle constraint. The guidance commands are synthesized by introducing an additional command to control impact-time. The structure of the additional command has a BPN-based loop multiplied by time-varying gains being proportional to the time difference between the required time-to-go and the estimated time-to-go by BPN. Moreover, the proposed homing loop converges to BPN as the time-to-go error is reduced. The performance of the proposed guidance law is evaluated by the computer simulations.