• 제목/요약/키워드: Angular Contact Ball Bearings

검색결과 61건 처리시간 0.022초

50,000rpm급 초고속 주축계의 정적/동적/열적 특성 해석 (Static/Dynamic/Thermal Characteristics Analysis of a High-Speed Spindle System with 50,000rpm)

  • 김석일;조재완;이원재;이용희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.494-499
    • /
    • 2003
  • This paper concerns the static, dynamic and thermal characteristics analysis of a high-speed spindle system for horizontal machining centers with 45mm x50,000rpm. The spindle system is designed based on the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The structural and thermal analysis models of spindle system are constructed by the finite element method. The static and dynamic characteristics are estimated based on the static deformation, modal parameter, mode shape and frequency response function, and the thermal characteristics are estimated based on the temperature rise, temperature distribution and thermal deformation. The analysis results illustrate that the designed spindle system has excellent structural and thermal stabilities

  • PDF

공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가 (The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness)

  • 김동현;이춘만
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

고속공작기계용 모터내장형 주축의 열거동 및 자켓냉각특성 해석 (Analysis Of The Thermal Behavior and Jacket Cooling Characteristics of Motor Integrated Spindle for High Speed Machine Tool)

  • Park, D.B.;Kang, J.P.;Song, J.B.
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.33-40
    • /
    • 1997
  • Recently, there are an increasing needs for high speed rotating spindle which is an important mechanical ele- ment for a high efficiency machine tool in order to shorten machining time and cut production costs. The heat gen- eration is the most important problem in the motor integrated spindle. In this study, the effects of temperature distribution and thermal behavior according to the oil-air lubrication and cooling conditions are investigate theo- retically and experimentally on the motor-integrated spindle under unloading condition. The experimental spin- dle system is composed with the angular contact steel ball bearings, oil-air lubrication, air or oil jacket cooling system. To analyze the thermal behavior and cooling characteristics for the motor integrated spindle, the analysis using the finite element method is carried out. The analytical results are compared with the experimental results.

  • PDF

이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법 (Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables)

  • 윤기찬;최동훈
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

구름 베어링 설계를 위한 유전 알고리듬 기반 조합형 최적설계 방법 (Genetic-Based Combinatorial Optimization Method for Design of Rolling Element Bearing)

  • 윤기찬;최동훈;박창남
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.166-171
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design for the application-based exclusive rolling element bearings, this study propose design methodologies by using a genetic-based combinatorial optimization. By the presence of discrete variables such as the number of rolling element (standard component) and by the engineering point of views, the design problem of the rolling element bearing can be characterized by the combinatorial optimization problem as a fully discrete optimization. A genetic algorithm is used to efficiently find a set of the optimum discrete design values from the pre-defined variable sets. To effectively deal with the design constraints and the multi-objective problem, a ranking penalty method is suggested for constructing a fitness function in the genetic-based combinatorial optimization. To evaluate the proposed design method, a robust performance analyzer of ball bearing based on quasi-static analysis is developed and the computer program is applied to some design problems, 1) maximize fatigue life, 2) maximize stiffness, 3) maximize fatigue life and stiffness, of a angular contact ball bearing. Optimum design results are demonstrate the effectiveness of the design method suggested in this study. It believed that the proposed methodologies can be effectively applied to other multi-objective discrete optimization problems.

  • PDF

베어링 스팬상에 기어구동축을 갖는 스핀들 베어링 시스템의 열특성에 관한 연구 (Temperature increase of the spindle bearing system having a gear on the bearing span)

  • 최진경;이대길
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.33-43
    • /
    • 1998
  • High cutting speeds and feeds are essential requirements of a machine tool structure to accomplish its basic function which is to produce a workpiece of the required geometric form with an acceptable surface finish at as high a rate of production as is economically possible. Since the bearings in high speed spindle units are the main heat source of the total cutting system, in this work, the thermal characteristics of the spindle bearing system with a tilting axis were investigated using finite element methods to improve the performance of the spindle bearing system. Based on the theoretical results, a specially designed prototype spindle bearing system has been manufactured. Using the manufactured spindle bearing system, the thermal characteristics were measured. From the comparison of the experimental results with the theoretical ones, it was found that the finite element method predicted well the thermal characteristics of the spindle bearing system.

고속주축의 냉각조건과 후반부 냉각 유무에 따른 열특성 연구 (A Study on the Thermal Characteristics of a High Speed Spindle according to the Cooling Existence of Rear Part and the Cooling Conditions)

  • 최대봉;김수태;이석준;김창용
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.50-55
    • /
    • 2012
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and bearing. This paper presents the thermal characteristic analysis for a high speed spindle with and without cooling at the rear part, considering the viscosity and the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil jacket cooling and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. This result can be applied to the design and manufacture of a high speed motor spindle.

CNC 자동선반 고속 스핀들의 밸런싱에 관한 연구 (A Study on Balancing of High-speed Spindle of CNC Automatic Lathe)

  • 김태종;구자함;이시복;김문생
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1214-1221
    • /
    • 2009
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, balancing procedure was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구 (A Study on Balancing of High Speed Spindle using Influence Coefficient Method)

  • 구자함;김인환;허남수
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

소형 태핑센터 주축의 열특성 및 주파수 분석 (Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center)

  • 최대봉;김수태;노승국;조현택
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.