• Title/Summary/Keyword: Angstrom Exponent

Search Result 17, Processing Time 0.027 seconds

EVALUATION OF "INCREASING TREND" IN SEAWIFS-OBSERVED ANGSTROM EXPONENT DURING 1998-2006 OVER EAST-ASIAN WATERS

  • Fukushima, Hajime;Ogata, Kazunori;Li, Liping
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.336-339
    • /
    • 2008
  • Monthly mean data of Angstrom exponent and Aerosol optical thickness (AOT) from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over the East Asian waters were analyzed. Increasing trend of the satellite-derived Angstrom exponent was found over 1998-2006 while AOT mean was observed stable during the same period. Statistical test showed that annual increase in Angstrom exponent of about 0.01 is statistically significant over three study sub-areas out of six surrounding waters of Japan. Comparison with Aqua/MODIS-derived Angstrom exponent time series over June 2002 through June 2008 showed consistent correlation, with similar statistical significance. The trend of Angstrom exponent was interpreted as increase in fraction of small aerosol particles to give quantitative estimates on the variability of aerosols. The mean increase is evaluated to be about +0.35%/yr or more in terms of the contribution of small particles to the total AOT, or sub-micron fraction (SMF).

  • PDF

Seasonal Variation and Measurement Uncertainty of UV Aerosol Optical Depth Measured at Gwangju, Korea (자외선 영역의 에어로졸 광학 깊이의 계절 분포 및 불확실도의 계산)

  • Kim, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.631-637
    • /
    • 2005
  • A UV-MFRSR instrument was used to measure the global and diffuse irradiances in 7 narrowband channels in the UV range 299.4, 304.4, 310.9, 317.3. 324.5, 331.3 and 367.4 nm at Gwangju ($35^{circ}\;13'N\;126^{circ}\;50'E$), Korea. Spectral UV-AOD was retrieved using the Langley plot method for data collected from April 2002 to July 2004. Temporal variation of AOD at 367.4 nm ($AOD_{367nm}$) showed a maximum in June ($0.95\pm0.43$) and a minimum in February ($0.31\pm0.14$). Clear seasonal variation of $AOD_{367nm}$ was observed with average values of $0.68\pm0.29,\;0.82\pm0.41,\;0.48\pm0.22\;and\;0.42\pm0.21$ in spring, summer, fall and winter, respectively, Average Angstrom exponent for the entire monitoring period was $2.03\pm0.75$ in the UV-A ($324.5\∼367.4$ nm) range. Seasonal variation of the Angstrom exponent showed a maximum in spring and a minimum in summer. The lowest Angstrom exponent in summer might be due to hygroscopic growth of particles under conditions of high relative humidity. UV-AOD changes under different atmospheric conditions were also analyzed. Uncertainty in retrieving spectral UV-AOD was also estimated to range between $\pm0.218\;at\;304.4\;nm\;and\;\pm0.135\;at\;367.4\;nm$. Major causes of uncertainty were total column ozone retrieval and extraterrestrial irradiance retrieval at shorter and longer wavelengths, respectively.

Aerosol-extinction Retrieval Method at Three Effective RGB Wavelengths Using a Commercial Digital Camera (상용 디지털 카메라를 이용한 3가지 유효 RGB 파장에서의 미세먼지 소산계수 산출법)

  • Park, Sunho;Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.71-80
    • /
    • 2020
  • In this article, we suggest a new method for measuring an aerosol's extinction coefficient using a commercial camera. For a given image, we choose three pixel-points that are imaged for the same kinds of objects located in similar directions. We suggest and calculate aerosol extinction coefficients from these RGB gray levels and the different distances of the three objects. To compare our measurement results, we also measure extinction coefficients using lidar. Finally, we find that there are meaningful and sensible correlations between these two measurements, with a correlation coefficient of 0.86. We measure the aerosol extinction coefficient at three different RGB wavelengths using the same method. From these aerosol extinction coefficients at three different wavelengths, we find that the Angstrom exponent ranges from 0.7 to 1.6 over a full daytime period. We believe that these Angstrom exponents can give important information about the size of the fine particles.

INCREASING TREND OF ANGSTROM EXPONENT OVER EAST ASIAN WATERS OBSERVED IN 1998-2005 SEAWIFS DATA SET

  • Fukushima, Hajime;Liping, Li;Takeno, Keisuke
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.57-60
    • /
    • 2007
  • Monthly mean data of ${\AA}ngstr{\ddot{o}}m$ exponent and Aerosol optical thickness (AOT) from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over the East Asian waters were analyzed. Increasing trend of the satellite-derived ${\AA}ngstr{\ddot{o}}m$ exponent from 1998 to 2004 was found while AOT mean was observed stable during the same period. The trend of ${\AA}ngstr{\ddot{o}}m$ exponent is then interpreted as increase in fraction of small aerosol particles to give quantitative estimates on the variability of aerosols. The mean increase is evaluated to be $4{\sim}5%$ over the 7-year period in terms of the contribution of small particles to the total AOT, or sub-micron fraction (SMF). Possibilities of the observed trend arising from the sensor calibration or algorithm performance are carefully checked, which confirm our belief that this observed trend is rather a real fact than an artifact due to data processing. Another time series of SMF data (2000-2005) estimated from the fine-mode fraction (FMF) of Moderate Resolution Imaging Spectroradiometer (MODIS) supports this observation yet with different calibration system and retrieval algorithms.

  • PDF

NEW RETRIEVAL METHOD FOR AEROSOL OPTICAL PARAMETERS USING DIRECTIONAL REFLECTANCE AND POLARIZATION DATA BY POLDER ON BOARD ADEOS

  • Kawata, Yoshiyuki;Izumiya, Toshiaki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.95-99
    • /
    • 1999
  • We proposed a new retrieval method for aerosol's real part of refractive index, optical thickness, and Angstrom exponent using POLDER's directional reflectance and polarization data. We showed that aerosol's real part of refractive index can be retrieved systematically using multi-directional PR(polarization and reflectance) diagrams in a single infrared band by our algorithm for the first time. We examined the retrieved results, by comparing with the simultaneously measured sky observation data at the study site and we obtained a reasonable agreement between them.

  • PDF

Measurements of the Lidar Ratio for Asian Dust and Pollution Aerosols with a Combined Raman and Back-scatter Lidar (라만-탄성 라이다를 이용한 황사 및 오염 에어러솔의 라이다 비 측정 연구)

  • Yoon, S.C.;Lee, Y.J.;Kim, S.W.;Kim, M.H.;Sugimoto, N.
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.483-494
    • /
    • 2010
  • The vertical profiles of the extinction coefficient, the backscatter coefficient, and the lidar ratio (i.e., extinction-to-backscattering ratio) for Asian dust and pollution aerosols are determined from Raman (inelastic) and elastic backscatter signals. The values of lidar ratios during two polluted days is found between 52 and 82 sr (July 22, 2009) and 40~60 sr (July 31, 2009) at 52 nm, with relatively low value of particle depolarization ratio (<5%) and high value of sun photometer-derived Angstrom exponent (> 1.2). However, lidar ratios between 25 and 40 sr are found during two Asian dust periods (October 20, 2009 and March 15, 2010), with 10~20% of particle depolarization ratio and the relatively low value of sun photometer-derived Angstrom exponent (< 0.39). The lidar ratio, particle depolarization ratio and color ratio are useful optical parameter to distinguish non-spherical coarse dust and spherical fine pollution aerosols. The comparison of aerosol extinction profiles determined from inelastic-backscatter signals by the Raman method and from elastic-backscatter signals by using the Fernald method with constant value of lidar ratio (50 sr) have shown that reliable aerosol extinction coefficients cannot be determined from elastic-backscatter signals alone, because the lidar ratio varies with aerosol types. A combined Raman and elastic backscatter lidar system can provide reliable information about the aerosol extinction profile and the aerosol lidar ratio.

Analysis of Aerosol Optical Properties in Seoul Using Skyradiometer Observation (스카이라디오미터 관측을 통한 서울 상공 에어러솔의 광학적 특성 분석)

  • Koo, Ja-Ho;Kim, Jhoon;Kim, Mi-Jin;Cho, Hi Ku;Aoki, Kazuma;Yamano, Maki
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.407-420
    • /
    • 2007
  • Optical characteristics of aerosols in Seoul are investigated from the measurements of sky radiance by Skyradiometer at Yonsei University from December 2005 to November 2006. Aerosol optical depth (AOD) shows a maximum in June due to weak ventilation and particle growth by aging process and hygroscopic effect. Single scattering albedo (SSA) and Angstrom Exponent (AE) show the lowest value in spring due to the Asian dust. It is clear that coarse mode is dominant in spring and fine mode is dominant in summer from the volume size distribution measured in this study. The explanations on the changes of aerosol loadings are provided through the correlation between AOD and AE, while the pattern of wavelength dependency related to particle size is shown through the correlation between SSA and AE. Backward trajectory analysis by HYSPLIT provides information about origin of aerosol, which allows us to classify the case according to the source region and the path distance. Although the direction of backward trajectory traces back mostly to west, coarse mode particle is dominant in the case of long pathway and fine mode particle is dominant in the case of short pathway. This discrepancy is caused by the regional difference of emitted particles.

Analysis of Aerosol Optical Properties for High Particulate Matters and Light Asian Dust in Seoul Using GOCI (GOCI 자료를 이용한 서울 지역 고농도 미세먼지와 옅은 황사 시 에어로졸 광학적 특성 분석)

  • Kim, Deok-Rae;Choi, Won-Jun;Choi, Myungje;Kim, Jiyoung;Cho, Ara;Kim, Sang-Kyun;Kim, Jhoon;Moon, Kyung-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • To distinguish between high particulate matter (HPM) and light Asian dust (LAD) events, aerosol optical properties from GOCI were investigated in Seoul from 2014 to 2016. The poor air quality case caused by fine atmospheric particulate matter (i.e., 80<$PM_{10}$<$400{\mu}g/m^3$) is clearly separated from the case of heavy Asian dust that generally shows the $PM_{10}$ concentration more than $400{\mu}g/m^3$. In this study, we have found eight cases for the poor air quality and divided them into the two events(i.e., HPM and LAD). In case of aerosol optical depth (AOD), there was no big difference between two events. However, Angstrom exponent (AE) for HPM events was greater than 1, while that for LAD events less than 1. As a result of comparing aerosol type, non-absorbing fine mode aerosols were dominant for HPM events, but coarse and absorbing coarse mode aerosols for LAD events. Therefore, AE and aerosol type from GOCI can be used to distinguish between two events effectively.

Characterization of Optical Properties of Long-range Transported Asian Dust in NorthEast Asia (동북아시아 지역에서 황사의 중장거리 이동에 따른 광학적 특성 변화 분석)

  • Noh, Youngmin;Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.243-251
    • /
    • 2013
  • The optical properties of long-range transported Asian dust were studied by the satellite observations and Sun/sky radiometer measurements from the Aerosol Robotic Network(AERONET) in Northeast Asia. The movement of Asian dust from source regions to downwind areas was tracked by the Ozone Monitoring Instrument(OMI) derived aerosol product imagery. The optical properties of Asian dust were classified for geographical locations, which are source regions such as deserts area in Dunhuang and Inner Mongolia, downwind areas such as Yulin and Beijing, and long-range transported regions such as Korea(Anmyon and Gosan) and Japan(Noto). In general, relatively higher aerosol mass loadings with larger aerosol particles at desert regions were found. Aerosol Optical Depth(AOD) decreased significantly in downwind areas and long-range transported areas, which was accompanied by increased Angstrom exponents. This indicates the effects of aerosol mixing with various pollutants during transport of Asian dust plume on aerosol optical properties. Moreover, relatively high Single-Scattering Albedo(SSA) at 440 nm values ranging from 0.90 - 0.96 and increasing tendency of SSA with wavelength were observed at source region. The spectral dependence of SSA decreased during long-range transport.

Analysis of AOD Characteristics Retrieved from Himawari-8 Using Sun Photometer in South Korea (태양광도계 자료를 이용한 한반도 내 Himawari-8 관측 AOD 특성 분석)

  • Lee, Gi-Taek;Ryu, Seon-Woo;Lee, Tae-Young;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.425-439
    • /
    • 2020
  • Through the operations of advanced geostationary meteorological satellite such as Himawari-8 and GK2A, higher resolution and frequency of AOD (Aerosol Optical Depth) data have become available. In this study, we analyzed the characteristics of Himawari-8/AHI (Advanced Himawari Imager) aerosol properties using the recent 4 years (2016~2019) of Sun photometer data observed at the five stations(Seoul National University, Yonsei University, Hankuk University of Foreign Studies, Gwangju Institute of Science and Technology, Anmyon island) which is a part of the AERONET (Aerosol Robotic Network). In addition, we analyzed the causes for the AOD differences between Himawari AOD and Sun photometer AOD. The results showed that the two AOD data are very similar regardless of geographic location, in particular, for the clear condition (cloud amount < 3). However, the quality of Himawari AOD data is heavily degraded compared to that of the clear condition, in terms of bias (0.05 : 0.21), correlation (0.74 : 0.64) and RMSE (Root Mean Square Error; 0.21 : 0.51), when cloud amount is increased. In general, the large differences between two AOD data are mainly related to the cloud amount and relative humidity. The Himawari strongly overestimates the AOD at all five stations when cloud amount and relative humidity are large. However, the wind speed, precipitable water, height of cloud base and Angstrom Exponent have been shown to have no effect on the AOD differences irrespective of geographic location and cloud amount. The results suggest that caution is required when using Himawari AOD data in cloudy conditions.